BIT Numerical Mathematics

, Volume 52, Issue 4, pp 905–932 | Cite as

Stable finite difference schemes for the magnetic induction equation with Hall effect

  • Paolo Corti
  • Siddhartha Mishra


We consider a sub-model of the Hall-MHD equations: the so-called magnetic induction equations with Hall effect. These equations are non-linear and include third-order spatial and spatio-temporal mixed derivatives. We show that the energy of the solutions is bounded and design finite difference schemes that preserve the energy bounds for the continuous problem. We design both divergence preserving schemes and schemes with bounded divergence. We present a set of numerical experiments that demonstrate the robustness of the proposed schemes.


Finite difference methods Stability and convergence of numerical methods 

Mathematics Subject Classification

65M06 65M12 


  1. 1.
    Biskamp, D.: Nonlinear Magnetohydrodynamics. Cambridge University Press, New York (1993) CrossRefGoogle Scholar
  2. 2.
    Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341–365 (1999) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Fuchs, F.G., Karlsen, K., Mishra, S., Risebro, N.H.: Stable upwind schemes for the magnetic induction equation. Math. Model. Numer. Anal. 43(5), 825–852 (2009) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Fuchs, F.G., McMurry, A.D., Mishra, S., Risebro, N.H., Waagan, K.: Simulating waves in the upper solar atmosphere with SURYA: a well-balanced high-order finite volume code. Astrophys. J. 732(2), 75 (2011) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretisation method. SIAM Rev. 43, 89–112 (2001) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Gurnett, D.A., Bhattacharjee, A.: Introduction to Plasma Physics. Cambridge University Press, New York (2005) Google Scholar
  7. 7.
    Hiptmair, R.: Multi-grid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher order finite difference schemes for the magnetic induction equations. BIT Numer. Math. 49(2), 375–395 (2009) MATHCrossRefGoogle Scholar
  9. 9.
    Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher order finite difference schemes for the magnetic induction equations with resistivity. IMA J. Numer. Anal. (2011). doi: 10.1093/imanum/drg030 Google Scholar
  10. 10.
    Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: deBoor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, New York (1974) Google Scholar
  11. 11.
    Ma, Z.W., Bhattacharjee, A.: Hall magnetohydrodynamic reconnection: the geospace environment challenge. J. Geophys. Res. 106, 3773–3782 (2001) CrossRefGoogle Scholar
  12. 12.
    Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 2 (2004) CrossRefGoogle Scholar
  13. 13.
    Mishra, S., Svärd, M.: On stability of numerical scheme via frozen coefficients and magnetic induction equations. BIT Numer. Math. 50(1), 85–108 (2010) MATHCrossRefGoogle Scholar
  14. 14.
    Mishra, S., Tadmor, E.: Constraint preserving schemes using potential-based fluxes. I. Multidimensional transport equations. Commun. Comput. Phys. 9(3), 688–710 (2010) MathSciNetGoogle Scholar
  15. 15.
    Qian, X., Balbás, J., Bhattacharjee, A., Yang, H.: A numerical study of magentic reconnection: A central scheme for Hall MHD. In: Tadmor, E., Liu, J.-G., Tzavaras, A. (eds.) Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the 12th International Conference held in University of Maryland, June 2008. AMS Proc. Symp. Applied Math., vol. 67, pp. 879–888 (2008) Google Scholar
  16. 16.
    Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110, 47–67 (1994) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218, 333–352 (2006) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Torrilhon, M., Fey, M.: Constraint-preserving upwind methods for multidimensional advection equations. SIAM J. Numer. Anal. 42(4), 1694–1728 (2004) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Toth, G., Ma, Y.J., Gombosi, T.I.: Hall magnetohydrodynamics on block adaptive grids. J. Comput. Phys. 227, 6967–6984 (2008) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2012

Authors and Affiliations

  1. 1.Seminar For Applied Mathematics (SAM)ETH ZentrumZürichSwitzerland

Personalised recommendations