BIT Numerical Mathematics

, Volume 51, Issue 2, pp 339–366 | Cite as

Improvement of a Sinc-collocation method for Fredholm integral equations of the second kind

  • Tomoaki Okayama
  • Takayasu Matsuo
  • Masaaki Sugihara


A Sinc-collocation scheme for Fredholm integral equations of the second kind was proposed by Rashidinia–Zarebnia in 2005. In this paper, two improved versions of the Sinc-collocation scheme are presented. The first version is obtained by improving the scheme so that it becomes more practical, and natural from a theoretical view point. Then it is rigorously proved that the convergence rate of the modified scheme is exponential, as suggested in the literature. In the second version, the variable transformation employed in the original scheme, the “tanh transformation”, is replaced with the “double exponential transformation”. It is proved that the replacement improves the convergence rate drastically. Numerical examples which support the theoretical results are also given.


Sinc-collocation method Fredholm integral equation Variable transformation 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anselone, P.M.: Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Englewood Cliffs, Prentice-Hall (1971) MATHGoogle Scholar
  2. 2.
    Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, New York (1997) MATHCrossRefGoogle Scholar
  3. 3.
    Delves, L.M., Mohammed, J.L.: Computational Methods for Integral Equations. Cambridge University Press, Cambridge (1985) MATHCrossRefGoogle Scholar
  4. 4.
    Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics, Southampton (1996) Google Scholar
  5. 5.
    Hackbusch, W.: Integral Equations: Theory and Numerical Treatment. Birkhäuser, Boston (1995) MATHGoogle Scholar
  6. 6.
    Kress, R.: Linear Integral Equations, 2nd edn. Springer, New York (1999) MATHGoogle Scholar
  7. 7.
    Kythe, P.K., Puri, P.: Computational Methods for Linear Integral Equations. Birkhäuser, Boston (2002) MATHCrossRefGoogle Scholar
  8. 8.
    Mori, M., Sugihara, M.: The double-exponential transformation in numerical analysis. J. Comput. Appl. Math. 127, 287–296 (2001) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Muhammad, M., Nurmuhammad, A., Mori, M., Sugihara, M.: Numerical solution of integral equations by means of the Sinc collocation method based on the double exponential transformation. J. Comput. Appl. Math. 177, 269–286 (2005) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Okayama, T., Matsuo, T., Sugihara, M.: Error estimates with explicit constants for Sinc approximation, Sinc quadrature and Sinc indefinite integration. Mathematical Engineering Technical Reports 2009-01, The University of Tokyo (2009) Google Scholar
  11. 11.
    Okayama, T., Matsuo, T., Sugihara, M.: Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind. J. Comput. Appl. Math. 234, 1211–1227 (2010) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Rashidinia, J., Zarebnia, M.: Numerical solution of linear integral equations by using sinc-collocation method. Appl. Math. Comput. 168, 806–822 (2005) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Rashidinia, J., Zarebnia, M.: Convergence of approximate solution of system of Fredholm integral equations. J. Math. Anal. Appl. 333, 1216–1227 (2007) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Rashidinia, J., Zarebnia, M.: Solution of a Volterra integral equation by the sinc-collocation method. J. Comput. Appl. Math. 206, 801–813 (2007) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987) MATHGoogle Scholar
  16. 16.
    Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993) MATHGoogle Scholar
  17. 17.
    Stenger, F.: Summary of Sinc numerical methods. J. Comput. Appl. Math. 121, 379–420 (2000) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Sugihara, M., Matsuo, T.: Recent developments of the Sinc numerical methods. J. Comput. Appl. Math. 164–165, 673–689 (2004) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tanaka, K., Sugihara, M., Murota, K.: Function classes for successful DE-Sinc approximations. Math. Comput. 78, 1553–1571 (2009) MathSciNetMATHGoogle Scholar
  20. 20.
    Tanaka, K., Sugihara, M., Murota, K., Mori, M.: Function classes for double exponential integration formulas. Numer. Math. 111, 631–655 (2009) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2010

Authors and Affiliations

  • Tomoaki Okayama
    • 1
  • Takayasu Matsuo
    • 1
  • Masaaki Sugihara
    • 1
  1. 1.Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations