Advertisement

BIT Numerical Mathematics

, Volume 50, Issue 1, pp 207–220 | Cite as

A note on preconditioned GMRES for solving singular linear systems

  • Naimin Zhang
Article

Abstract

For solving a singular linear system Ax=b by GMRES, it is shown in the literature that if A is range-symmetric, then GMRES converges safely to a solution. In this paper we consider preconditioned GMRES for solving a singular linear system, we construct preconditioners by so-called proper splittings, which can ensure that the coefficient matrix of the preconditioned system is range-symmetric.

Singular linear systems Range-symmetric Proper splitting Singular perconditioner 

Mathematics Subject Classification (2000)

15A09 65F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berman, A., Plemmons, R.: Cones and iterative methods for best least squares solutions of linear systems. SIAM J. Numer. Anal. 11, 145–154 (1974) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berman, A., Neumann, M.: Proper splittings of rectangular matrices. SIAM J. Appl. Math. 31, 307–312 (1976) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brown, P., Walker, H.: GMRES on (nearly) singular systems. SIAM J. Matrix Anal. Appl. 18, 37–51 (1997) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Calvetti, D., Lewis, B., Reichel, L.: GMRES-type methods for inconsistent systems. Linear Algebra Appl. 316, 157–169 (2000) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cao, Z.: A note on constraint preconditioning for nonsymmetric indefinite matrices. SIAM J. Matrix Anal. Appl. 24, 121–125 (2002) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Campbell, S., Meyer, C.: Generalized Inverses of Linear Transformations. Pitman, London (1979) MATHGoogle Scholar
  8. 8.
    Du, X., Szyld, D.B.: Inexact GMRES for singular linear systems. BIT Numer. Math. (2008). doi: 10.1007/s10543-008-0171-2 MathSciNetGoogle Scholar
  9. 9.
    Eiermann, M., Marek, I., Niethammer, W.: On the solution of singular linear systems of algebraic equations by semi-iterative methods. Numer. Math. 53, 265–283 (1988) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Elman, H.: Preconditioning for the steady-state Navier-Stokes Equations with low viscosity. SIAM J. Sci. Comput. 20, 1299–1316 (1999) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965) MATHCrossRefGoogle Scholar
  12. 12.
    Ipsen, I.C.F., Meyer, C.D.: The idea behind Krylov methods. Am. Math. Mon. 105, 889–899 (1998) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Keller, C., Gould, I.M., Wathen, A.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21, 1300–1317 (2000) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Reichel, L., Ye, Q.: Breakdown-free GMRES for singular systems. SIAM J. Matrix Anal. Appl. 26, 1001–1021 (2005) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 858–869 (1986) MathSciNetGoogle Scholar
  16. 16.
    Schwerdtfeger, H.: Introduction to Linear Algebra and the Theory of Matrices. Noordhoff, Groningen (1950) MATHGoogle Scholar
  17. 17.
    Sidi, A.: DGMRES: a GMRES-type algorithm for Drazin-inverse solution of singular nonsymmetric linear systems. Liner Algebra Appl. 335, 189–204 (2001) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Smoch, L.: Some results about GMRES in the singular case. Numer. Algorithms 22, 193–212 (1999) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Smoch, L.: Spectral behaviour of GMRES applied to singular systems. Adv. Comput. Math. 27, 151–166 (2007) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhang, N., Wei, Y.: On the convergence of general stationary iterative methods for Range-Hermitian singular linear systems. Numer. Linear Algebra Appl. (2009). doi: 10.10021/nla.663 Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceWenzhou UniversityWenzhouChina

Personalised recommendations