Advertisement

BIT Numerical Mathematics

, Volume 49, Issue 2, pp 249–280 | Cite as

Univariate modified Fourier methods for second order boundary value problems

  • Ben Adcock
Article

Abstract

We develop and analyse a new spectral-Galerkin method for the numerical solution of linear, second order differential equations with homogeneous Neumann boundary conditions. The basis functions for this method are the eigenfunctions of the Laplace operator subject to these boundary conditions. Due to this property this method has a number of beneficial features, including an \(\mathcal{O}(N^{2})\) condition number and the availability of an optimal, diagonal preconditioner. This method offers a uniform convergence rate of \(\mathcal{O}(N^{-3})\) , however we show that by the inclusion of an additional 2M basis functions, this figure can be increased to \(\mathcal{O}(N^{-2M-3})\) for any positive integer M.

Keywords

Spectral methods Neumann boundary value problems Generalized Fourier expansions Convergence acceleration 

Mathematics Subject Classification (2000)

65N35 42C15 65B99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adcock, B.: Sparse grid modified Fourier series and application to boundary value problems. Technical Report NA2008/08, DAMTP, University of Cambridge (2008) Google Scholar
  2. 2.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006) MATHGoogle Scholar
  3. 3.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. John Hopkins Press, Baltimore (1989) MATHGoogle Scholar
  4. 4.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985) MATHGoogle Scholar
  5. 5.
    Huybrechs, D., Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation IV: Accelerating convergence. Technical Report NA2007/07, DAMTP, University of Cambridge (2007) Google Scholar
  6. 6.
    Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. A 461, 1383–1399 (2005) MATHCrossRefGoogle Scholar
  7. 7.
    Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation II: Expansions in polyharmonic eigenfunctions. Technical Report NA2006/07, DAMTP, University of Cambridge (2006) Google Scholar
  8. 8.
    Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation III: Multivariate expansions. IMA J. Numer. Anal. (2007, to appear). doi: 10.1093/imanum/drn020
  9. 9.
    Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation I: Modified Fourier expansions. IMA J. Numer. Anal. 28, 862–887 (2008) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis, 3rd edn. Interscience, New York (1958) MATHGoogle Scholar
  11. 11.
    Lanczos, C.: Discourse on Fourier series. Hafner, New York (1966) MATHGoogle Scholar
  12. 12.
    Mitrinovic, D.S.: Analytic Inequalities. Springer, Berlin (1970) MATHGoogle Scholar
  13. 13.
    Olver, S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Numer. Anal. 26, 213–227 (2006) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Olver, S.: On the convergence rate of a modified Fourier series. Math. Comput. (2007, to appear). doi: 10.1090/S0025-5718-09-02204-2
  15. 15.
    Práger, M.: Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle. Appl. Math. 43(4), 311–320 (1998) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994) MATHGoogle Scholar
  17. 17.
    Shen, J.: Efficient spectral-Galerkin method. I. Direct solvers of second and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shen, J.: Efficient spectral-Galerkin method. II. Direct solvers of second and fourth-order equations using Chebyshev polynomials. SIAM J. Sci. Comput. 16(1), 74–87 (1995) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Temlyakov, V.: Approximation of Periodic Functions. Nova Sci., New York (1993) MATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations