Skip to main content
Log in

Pathwise Taylor schemes for random ordinary differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Random ordinary differential equations (RODEs) are ordinary differential equations which contain a stochastic process in their vector fields. They can be analyzed pathwise using deterministic calculus, but since the driving stochastic process is usually only Hölder continuous in time, the vector field is not differentiable in the time variable. Traditional numerical schemes for ordinary differential equations thus do not achieve their usual order of convergence when applied to RODEs. Nevertheless, deterministic calculus can still be used to derive higher order numerical schemes for RODEs by means of a new kind of integral Taylor expansion. The theory is developed systematically here, applied to illustrative examples involving Brownian motion and fractional Brownian motion as the driving processes and compared with other numerical schemes for RODEs in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, L.: Random Dynamical Systems. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  2. Bunke, H.: Gewöhnliche Differentialgleichungen mit zufälligen Parametern. Akademie, Berlin (1972)

    MATH  Google Scholar 

  3. Carbonell, F., Jimenez, J.C., Biscay, R.J., de la Cruz, H.: The local linearization method for numerical integration of random differential equations. BIT 45, 1–14 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  5. Deuflhard, P., Bornemann, V.: Scientific Computing with Ordinary Differential Equations. Springer, Berlin (2002)

    MATH  Google Scholar 

  6. Grecksch, W., Kloeden, P.E.: Time-discretised Galerkin approximation of parabolic stochastic PDEs. Bull. Austral. Math. Soc. 54, 79–85 (1996)

    MathSciNet  Google Scholar 

  7. Grüne, L., Kloeden, P.E.: Higher order numerical schemes for affinely controlled nonlinear systems. Numer. Math. 89, 669–690 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grüne, L., Kloeden, P.E.: Pathwise approximation of random ordinary differential equations. BIT 41, 710–721 (2001)

    Article  Google Scholar 

  9. Imkeller, P., Schmalfuß, B.: The conjugacy of stochastic and random differential equations and the existence of global attractors. J. Dyn. Differ. Equ. 13, 215–249 (2001)

    Article  MATH  Google Scholar 

  10. Isidori, A.: Nonlinear Control Systems. An Introduction, 2nd edn. Springer, Heidelberg

  11. Jentzen, A.: Numerische Verfahren hoher Ordnung für zufällige Differentialgleichungen. Diplomarbeit, J.W. Goethe Universität, Frankfurt am Main, February 2007

  12. Jentzen, A., Kloeden, P.E.: Pathwise convergent higher order numerical schemes for random ordinary differential equations. Proc. R. Soc. Lond. A 463(2087), 2929–2944 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jentzen, A., Neuenkirch, A.: A random Euler scheme for Carathéodory differential equations. J. Comput. Appl. Math. 224(1), 346–359 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kloeden, P.E., Platen, E.: Numerical Solutions of Stochastic Differential Equations. Springer, Berlin (1992)

    Google Scholar 

  15. Prévot, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Springer, Berlin (2007)

    MATH  Google Scholar 

  16. Sobczyk, K.: Stochastic Differential Equations with Applications to Physics and Engineering. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  17. Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, San Diego (1973)

    MATH  Google Scholar 

  18. Stengle, G.: Numerical methods for systems with measurable coefficients. Appl. Math. Lett. 3, 25–29 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sussmann, H.J.: On the gap between deterministic and stochastic differential equations. Ann. Probab. 6, 590–603 (1977)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnulf Jentzen.

Additional information

Communicated by Anders Szepessy.

Partially supported by the DFG project “Pathwise numerics and dynamics of stochastic evolution equations”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jentzen, A., Kloeden, P.E. Pathwise Taylor schemes for random ordinary differential equations. Bit Numer Math 49, 113–140 (2009). https://doi.org/10.1007/s10543-009-0211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-009-0211-6

Keywords

Mathematics Subject Classification (2000)

Navigation