BIT Numerical Mathematics

, Volume 48, Issue 1, pp 5–27

# Full rank positive matrix symbols: interpolation and orthogonality

• C. Conti
• M. Cotronei
• T. Sauer
Article

## Abstract

We investigate full rank interpolatory vector subdivision schemes whose masks are positive definite on the unit circle except the point z=1. Such masks are known to give rise to convergent schemes with a cardinal limit function in the scalar case. In the full rank vector case, we show that there also exists a cardinal refinable function based on this mask, however, with respect to a different notion of refinability which nevertheless also leads to an iterative scheme for the computation of vector fields. Moreover, we show the existence of orthogonal scaling functions for multichannel wavelets and give a constructive method to obtain these scaling functions.

## Key words

subdivision schemes refinement equation full rank schemes interpolatory matrix refinable function matrix spectral factorization

## References

1. 1.
S. Bacchelli, M. Cotronei, and T. Sauer, Wavelets for multichannel signals, Adv. Appl. Math., 29 (2002), pp. 581–598.
2. 2.
F. M. Callier, On polynomial matrix spectral factorization by symmetric extraction, IEEE Trans. Autom. Control, 30 (1985), pp. 453–464.
3. 3.
C. Conti, M. Cotronei, and T. Sauer, Interpolatory vector subdivision schemes, in A. Cohen, J. L. Merrien, and L. L. Schumaker, eds., Curves and Surfaces, Avignon 2006, Nashboro Press, 2007, pp. 71–81.Google Scholar
4. 4.
C. Conti, M. Cotronei, and T. Sauer, Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution, submitted for publication.Google Scholar
5. 5.
M. Cotronei and T. Sauer, Full rank filters and polynomial reproduction, Commun. Pure Appl. Anal., 6 (2007), pp. 667–687.
6. 6.
I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, SIAM, 1992.Google Scholar
7. 7.
R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.
8. 8.
INRIA, scilab – the open source platform for numerical computation, http://www.scilab.org, 1989.Google Scholar
9. 9.
J. Ježek and V. Kučera, Efficient algorithm for matrix spectral factorization, Automatica, 21 (1985), pp. 663–669.
10. 10.
A. Klein, T. Sauer, A. Jedynak, and W. Skrandies, Conventional and wavelet coherence applied to human electrophysiological data, IEEE Trans. Biosignal Proc., 53 (2006), pp. 266–272.Google Scholar
11. 11.
M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Prindle, Weber & Schmidt, 1969, Paperback reprint, Dover Publications, 1992.Google Scholar
12. 12.
C. A. Micchelli, Interpolatory subdivision schemes and wavelets, J. Approximation Theory, 86 (1996), pp. 41–71.
13. 13.
C. A. Micchelli and T. Sauer, Regularity of multiwavelets, Adv. Comput. Math., 7(4) (1997), pp. 455–545.
14. 14.
C. A. Micchelli and T. Sauer, On vector subdivision, Math. Z., 229 (1998), pp. 621–674.