BIT Numerical Mathematics

, Volume 47, Issue 2, pp 469–482 | Cite as

Numerical analysis of a fast integration method for highly oscillatory functions

  • Shuhuang Xiang


The integration of systems containing Bessel functions is a central point in many practical problems in physics, chemistry and engineering. This paper presents a new numerical analysis for the collocation method presented by Levin for \(\int_a^b f(x)S(rx)dx\) and gives more accurate error analysis about the integration of systems containing Bessel functions. The effectiveness and accuracy of the quadrature is tested for Bessel functions with large arguments.

Key words

oscillatory integrals Bessel function error bounds collocation method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1965.Google Scholar
  2. 2.
    P. I. Davis and P. Rabinowitz, Methods of Numerical Integral Integration, 2nd edn., Academic Press, 1984.Google Scholar
  3. 3.
    L. N. G. Filon, On a quadrature formula for trigonometric integrals, Proc. R. Soc. Edinb., 49 (1928), pp. 38–47.Google Scholar
  4. 4.
    A. Iserles and S. P. Nørsett, Efficient quadrature of highly-oscillatory integrals using derivatives, Proc. R. Soc. A, 461 (2005), pp. 1383–1399.CrossRefGoogle Scholar
  5. 5.
    A. Iserles and S. P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation, BIT, 44 (2004), pp. 755–772.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Kress, Numerical Analysis, Springer, New York, 1998.MATHGoogle Scholar
  7. 7.
    D. Levin, Procedures for computing one-and-two dimensional integrals of functions with rapid irregular oscillations, Math. Comput., 38 (1982), pp. 531–538.MATHCrossRefGoogle Scholar
  8. 8.
    D. Levin, Fast integration of rapidly oscillatory functions, J. Comput. Appl. Math., 67 (1996), pp. 95–101.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Levin, Analysis of a collocation method for integrating rapidly oscillatory functions, J. Comput. Appl. Math., 78 (1997), pp. 131-138.Google Scholar
  10. 10.
    I. M. Longman, A method for numerical evaluation of finite integrals of oscillatory functions, Math. Comput., 14 (1960), pp. 53–59.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    E. Stein, Harmonic Analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University, Princeton, NJ, 1993.MATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Applied Mathematics and SoftwareCentral South UniversityChangshaP.R. China

Personalised recommendations