BIT Numerical Mathematics

, Volume 47, Issue 2, pp 277–296 | Cite as

An accelerated algebraic multigrid algorithm for total-variation denoising

  • Ke Chen
  • Joseph Savage


The variational partial differential equation (PDE) approach for image denoising restoration leads to PDEs with nonlinear and highly non-smooth coefficients. Such PDEs present convergence difficulties for standard multigrid methods. Recent work on algebraic multigrid methods (AMGs) has shown that robustness can be achieved in general but AMGs are well known to be expensive to apply. This paper proposes an accelerated algebraic multigrid algorithm that offers fast speed as well as robustness for image PDEs. Experiments are shown to demonstrate the improvements obtained.


Multigrid Method Image Denoising Interpolation Operator Setup Phase Point Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, USA, 1987.MATHGoogle Scholar
  2. 2.
    P. Blomgren, T. F. Chan, P. Mulet, L. Vese, and W. L. Wan, Variational PDE models and methods for image processing, in Res. Notes Math., vol. 420, pp. 43–67, Chapman & Hall/CRC, (2000).Google Scholar
  3. 3.
    R. H. Chan, T. F. Chan, and W. L. Wan, Multigrid for differential convolution problems arising from image processing, in Proc. Sci. Comput. Workshop, eds. R. Chan, T. F. Chan and G. H. Golub, Springer, (1997). See also CAM report 97-20, UCLA, USA.Google Scholar
  4. 4.
    R. H. Chan, T. F. Chan, and C. K. Wong, Cosine transform based preconditioners for total variation minimization problems in image processing, IEEE Trans. Image Proc., 8 (1999), pp. 1472–1478. See also CAM report 97–44, UCLA.Google Scholar
  5. 5.
    R. H. Chan, Q. S. Chang, and H. W. Sun, Multigrid method for ill-conditioned symmetric Toeplitz systems, SIAM J. Sci. Comput., 19 (1998), pp. 516–529.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. H. Chan, T. F. Chan, and W. L. Wan, Multigrid for differential-convolution problems arising from image processing, Proceedings of the Workshop on Scientific Computing, vol. 97, Springer, (1997).Google Scholar
  7. 7.
    T. F. Chan and K. Chen, On a nonlinear multigrid algorithm with primal relaxation for the image total variation minimisation, Numer. Algorithms., 41 (2006), pp. 387–411.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    T. F. Chan and K. Chen, An optimization based total variation image denoising, SIAM J. Multiscale Modeling & Simulation, 5(2) (2006), pp. 615–645.CrossRefMathSciNetGoogle Scholar
  9. 9.
    T. F. Chan, K. Chen, and X.-C. Tai, Nonlinear multilevel schemes for solving the total variation image minimization problem, in Image Processing Based On Partial Differential Equations, eds. X.-C. Tai, K.-A. Lie, T.F. Chan, S. Osher, pp.265–288, Springer, (2006).Google Scholar
  10. 10.
    T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964–1977.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    T. F. Chan, H. M. Zhou, and R. H. Chan, Continuation method for total variation denoising problems, UCLA CAM Report, USA, (1995).Google Scholar
  12. 12.
    Q. S. Chang and I. Chern, Acceleration methods for total variation based image denoising, SIAM J. Sci. Comput., 25 (2003), pp. 982–994.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Q. S. Chang, Y. S. Wong, and H. Fu, On the algebraic multigrid method, J. Comput. Phys., 125 (1996), pp. 279–292.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Q. S. Chang, W. C. Wang, and J. Wu, A method for total variation-based reconstruction of noisy and blurred images, in: Image Processing Based On Partial Differential Equations, eds. X.-C. Tai, K.-A. Lie, T.F. Chan, and S. Osher, pp. 95–108, Springer, (2006).Google Scholar
  15. 15.
    K. Chen, Matrix Preconditioning Techniques and Applications, Cambridge Monographs on Applied and Computational Mathematics (No. 19). Cambridge University Press, UK, (2005).Google Scholar
  16. 16.
    C. Frohn-Schauf, S. Henn, and K. Witsch, Nonlinear multigrid methods for total variation image denoising, Comput. Visual Sci., 7 (2004), pp. 199–206.MATHMathSciNetGoogle Scholar
  17. 17.
    M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally constrained optimization problem, SIAM J. Appl. Math., 64 (2004), pp. 1311–1333.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    W. Hinterberger, M. Hintermüller, K. Kunisch, M. von Oehsen, and O. Scherzer, Tube methods for BV regularization, J. Math. Imaging Vis., 19 (2003), pp. 219–235.MATHCrossRefGoogle Scholar
  19. 19.
    T. Kärkkäinen, K. Majava, and M. M. Mäkelä, Comparison of formulations and solution methods for image restoration problems, Series B Report No. B 14/2000, Department of Mathematical Information Technology, University of Jyväskylä, Finland, (2000).Google Scholar
  20. 20.
    I. E. Karpin and O. Axelsson, On a class of nonlinear equation solvers based on residual norm reduction over a sequence of affine subspaces, SIAM J. Numer. Anal., 16 (1995), pp. 228–249.Google Scholar
  21. 21.
    Y. Y. Li and F. Santosa, A computational algorithm for minimizing total variation in image restoration, IEEE Trans. Image Proc., 5 (1996), pp. 987–995.CrossRefGoogle Scholar
  22. 22.
    A. Marquina and S. Osher, Explicit algorithms for a new time dependant model based onlevel set motion for nonlinear deblurring and noise removal, SIAM J. Sci. Comput., 22 (2000), pp. 387–405.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), pp. 259–268.MATHCrossRefGoogle Scholar
  24. 24.
    J. W. Ruge and K. Stuben, Algebraic Multigrid, in S. F. McCormick (ed.), Multigrid Methods, SIAM, Philadelphia, USA (1987).Google Scholar
  25. 25.
    J. Savage and K. Chen, An improved and accelerated nonlinear multigrid method for total-variation denoising, Int. J. Comput. Math., 82 (2005), pp. 1001–1015.MATHMathSciNetGoogle Scholar
  26. 26.
    J. Savage and K. Chen, On multigrids for solving a class of improved total variation based PDE models, in Image Processing Based On Partial Differential Equations, X.-C. Tai, K.-A. Lie, T.F. Chan, and S. Osher, eds., pp. 69–94, Springer (2006).Google Scholar
  27. 27.
    G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk, On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs, SIAM J. Numer. Anal., 42(2) (2004), pp. 686–713.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid, Academic Press, London (2001). (See its Appendix on AMG by K. Stuben).Google Scholar
  29. 29.
    C. R. Vogel, A multigrid method for total variation-based image denoising, In K. Bowers and J. Lund, eds., Computation and Control IV, vol. 20, Progress in Systems and Control Theory, Birkhäuser (1995).Google Scholar
  30. 30.
    C. R. Vogel, Negative results for multilevel preconditioners in image deblurring, in M. Nielson et al., eds., Scale-space theories in computer vision, pp. 292–304, Springer (1999).Google Scholar
  31. 31.
    C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Stat. Comput., 17 (1996), pp. 227–238.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    C. R. Vogel and M. E. Oman, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Trans. Image Proc., 7 (1998), pp. 813–824.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, USA, 2002.MATHGoogle Scholar
  34. 34.
    C. Wagner, Introduction to Algebraic Multigrid, Course Notes of an Algebraic Multigrid, Course at the University of Heidelberg in the Winter semester, 1998/1999.Google Scholar
  35. 35.
    T. Washio and C. Oosterlee, Krylov subspace acceleration for nonlinear multigrid schemes, Electronic Trans. Numer. Anal., 6 (1997), pp. 271–290.MATHMathSciNetGoogle Scholar
  36. 36.
    P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chichester, UK, 1992.MATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Mathematical SciencesThe University of LiverpoolLiverpoolUK

Personalised recommendations