BIT Numerical Mathematics

, Volume 46, Issue 2, pp 249–260 | Cite as

Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted L p -Norm



We consider the orthogonal L2-projection P onto continuous finite element spaces. We prove estimates for P in a weighted L p -norm and use these to prove corresponding approximation properties.

Key words

L2-projection weighted Lp-norm linear finite element space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Bramble, J. E. Pasciak, and O. Steinbach, On the stability of theL2projection inH1, Math. Comp., 71 (2001), pp. 147–156.Google Scholar
  2. 2.
    J. H. Bramble and J. Xu, Some estimates for a weightedL2projection, Math. Comp., 56 (1991), pp. 463–476.Google Scholar
  3. 3.
    S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, 1994.Google Scholar
  4. 4.
    C. Carstensen, Merging the Bramble–Pasciak–Steinbach and the Crouzeix–Thomée criterion forH1-stability of theL2-projection onto finite element spaces, Math. Comp., 71 (2001), pp. 157–163.Google Scholar
  5. 5.
    C. Carstensen, An adaptive mesh-refining algorithm allowing for anH1stableL2projection onto Courant finite element spaces, Constr. Approx., 20 (2004), pp. 549–564.Google Scholar
  6. 6.
    M. Crouzeix and V. Thomée, The stability inLpandWp1of theL2-projection onto finite element function spaces, Math. Comp., 48 (1987), pp. 521–532.Google Scholar
  7. 7.
    K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: Optimal error estimates inLL2andLL, SIAM J. Numer. Anal., 32 (1991), pp. 706–740.Google Scholar
  8. 8.
    L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483–493.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MathematicsChalmers University of Technology and Göteborg UniversityGöteborgSweden

Personalised recommendations