Advertisement

BIT Numerical Mathematics

, Volume 45, Issue 1, pp 37–67 | Cite as

Convergence Rates for Semi-Discrete Splitting Approximations for Degenerate Parabolic Equations with Source Terms

  • E. R. Jakobsen
  • K. H. Karlsen
Article

Abstract

We study a semi-discrete splitting method for computing approximate viscosity solutions of the initial value problem for a class of nonlinear degenerate parabolic equations with source terms. It is fairly standard to prove that the semi-discrete splitting approximations converge to the desired viscosity solution as the splitting step Δt tends to zero. The purpose of this paper is, however, to consider the more difficult problem of providing a precise estimate of the convergence rate. Using viscosity solution techniques we establish the L convergence rate \(\mathcal{O}(\sqrt{\Delta t})\) for the approximate solutions, and this estimate is robust with respect to the regularity of the solutions. We also provide an extension of this result to weakly coupled systems of equations, and in the case of more regular solutions we recover the “classical” rate \(\mathcal{O}(\Delta t)\) . Finally, we analyze in an example a fully discrete splitting method.

Keywords

nonlinear degenerate parabolic equation viscosity solution numerical method operator splitting convergence rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bardi, M. G. Crandall, L. C. Evans, H. M. Soner, and P. E. Souganidis, Viscosity Solutions and Applications, Springer-Verlag, Berlin, 1997. Lectures given at the 2nd C.I.M.E. Session held in Montecatini Terme, June 12–20, 1995, Edited by I. Capuzzo Dolcetta and P. L. Lions, Fondazione C.I.M.E. [C.I.M.E. Foundation]. Google Scholar
  2. 2.
    G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in finance theory, in Numerical Methods in Finance, Cambridge Univ. Press, Cambridge, 1997, pp. 1–21. Google Scholar
  3. 3.
    G. Barles, C. Daher, and M. Romano, Convergence of numerical schemes for parabolic equations arising in finance theory, Math. Models Methods Appl. Sci., 5(1) (1995), pp. 125–143. CrossRefGoogle Scholar
  4. 4.
    G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton–Jacobi–Bellman equations, M2AN Math. Model. Numer. Anal., 36(1) (2002), pp. 33–54. CrossRefGoogle Scholar
  5. 5.
    G. Barles and E. R. Jakobsen, Error bounds for monotone approximation schemes for Hamilton–Jacobi–Bellman equations, To appear in SIAM J. Numer. Anal. Google Scholar
  6. 6.
    G. Barles and B. Perthame, Comparison principle for Dirichlet-type Hamilton–Jacobi equations and singular perturbations of degenerated elliptic equations, Appl. Math. Optim., 21(1) (1990), pp. 21–44. CrossRefGoogle Scholar
  7. 7.
    G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second-order equations, Asymptotic Anal., 4(3) (1991), pp. 271–283. Google Scholar
  8. 8.
    J.-M. Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A-B, 265 (1967), pp. 333–336. Google Scholar
  9. 9.
    L. A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, AMS Colloquium Publications 43, Amer. Math. Soc., Providence, RI, 1995. Google Scholar
  10. 10.
    F. Camilli and M. Falcone, An approximation scheme for the optimal control of diffusion processes, RAIRO Modél. Math. Anal. Numér., 29(1) (1995), pp. 97–122. Google Scholar
  11. 11.
    B. Cockburn, G. Gripenberg, and S.-O. Londen, Continuous dependence on the nonlinearity of viscosity solutions of parabolic equations, J. Differential Equations, 170(1) (2001), pp. 180–187. CrossRefGoogle Scholar
  12. 12.
    M. G. Crandall and H. Ishii, The maximum principle for semicontinuous functions, Differential Integral Equations, 3(6) (1990), pp. 1001–1014. Google Scholar
  13. 13.
    M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27(1) (1999), pp. 1–67. Google Scholar
  14. 14.
    M. H. A. Davis, V. G. Panas, and T. Zariphopoulou, European option pricing with transaction costs, SIAM J. Control Optim., 31(2) (1993), pp. 470–493. CrossRefGoogle Scholar
  15. 15.
    K. Deckelnick and G. Dziuk, Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs, Interfaces Free Bound., 2(4) (2000), pp. 341–359. Google Scholar
  16. 16.
    W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993. Google Scholar
  17. 17.
    H. Ishii and S. Koike, Viscosity solutions for monotone systems of second-order elliptic PDEs, Comm. PDE., 16(6&7) (1991), pp. 1095–1128. Google Scholar
  18. 18.
    E. R. Jakobsen, On error bounds for approximation schemes for non-convex degenerate elliptic equations, BIT, 44(2) (2004), pp. 269–285. CrossRefGoogle Scholar
  19. 19.
    E. R. Jakobsen, On the rate of convergence of approximation schemes for Bellman equations associated with optimal stopping time problems, Math. Models Methods Appl. Sci. (M3AS), 13(5) (2003), pp. 613–644. CrossRefGoogle Scholar
  20. 20.
    E. R. Jakobsen, W2,∞ regularizing effect in a nonlinear, degenerate parabolic equation in one space dimension, Proc. Amer. Math. Soc., 132(11) (2004), pp. 3203–3213. CrossRefMathSciNetGoogle Scholar
  21. 21.
    E. R. Jakobsen and K. H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations, Electron. J. Differential Equations, pages No. 39, 10 pp. (electronic), 2002. Google Scholar
  22. 22.
    E. R. Jakobsen and K. H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations, J. Differential Equations, 183(2) (2002), pp. 497–525. CrossRefGoogle Scholar
  23. 23.
    E. R. Jakobsen, K. H. Karlsen, and N. H. Risebro, On the convergence rate of operator splitting for Hamilton–Jacobi equations with source terms, SIAM J. Numer. Anal., 39(2) (2001), pp. 499–518 (electronic). CrossRefGoogle Scholar
  24. 24.
    E. R. Jakobsen, K. H. Karlsen, and N. H. Risebro, On the convergence rate of operator splitting for weakly coupled systems of Hamilton–Jacobi equations, in Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, II (Magdeburg, 2000), Vol. 141 of Internat. Ser. Numer. Math. 140, Birkhäuser, Basel, 2001, pp. 553–562. Google Scholar
  25. 25.
    K. H. Karlsen and K.-A. Lie, An unconditionally stable splitting scheme for a class of nonlinear parabolic equations, IMA J. Numer. Anal., 19(4) (1999), pp. 609–635. CrossRefGoogle Scholar
  26. 26.
    N. V. Krylov, On the rate of convergence of finite-difference approximations for Bellman’s equations, Algebra i Analiz, 9(3) (1997), pp. 245–256. Google Scholar
  27. 27.
    N. V. Krylov, On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients, Probab. Theory Related Fields, 117(1) (2000), pp. 1–16. CrossRefGoogle Scholar
  28. 28.
    H. J. Kuo and N. S. Trudinger, Discrete methods for fully nonlinear elliptic equations, SIAM J. Numer. Anal., 29(1) (1992), pp. 123–135. CrossRefGoogle Scholar
  29. 29.
    H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, Springer-Verlag, New York, 1992. Google Scholar
  30. 30.
    J. O. Langseth, A. Tveito, and R. Winther, On the convergence of operator splitting applied to conservation laws with source terms, SIAM J. Numer. Anal., 33(3) (1996), pp. 843–863. CrossRefGoogle Scholar
  31. 31.
    G. T. Lines, M. L. Buist, P. Grøttum, A. J. Pullan, J. Sundnes, and A. Tveito, Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Comput. Vis. Sci., 5 (2003), pp. 215–239. CrossRefGoogle Scholar
  32. 32.
    G. T. Lines, P. Grøttum, and A. Tveito, Modeling the electrical activity of the heart: A bidomain model of the ventricles embedded in a torso, Comput. Vis. Sci., 5 (2003), pp. 195–213. CrossRefMathSciNetGoogle Scholar
  33. 33.
    Z. Qu and A. Garfinkel, An advanced algorithm for solving partial differential equation in cardiac conduction, IEEE Transactions of Biomedical Engineering, 46(9) (1999), pp. 1166–1168. CrossRefGoogle Scholar
  34. 34.
    P. E. Souganidis, Existence of viscosity solutions of Hamilton–Jacobi equations, J. Differential Equations, 56(3) (1985), pp. 345–390. CrossRefGoogle Scholar
  35. 35.
    G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), pp. 506–517. CrossRefGoogle Scholar
  36. 36.
    J. Sundnes, G. T. Lines, and A. Tveito, A second-order scheme for solving the coupled bidomain and forward problem, Technical Report, SIMULA Research Laboratory, 2002. Google Scholar
  37. 37.
    T. Tang, Convergence analysis for operator-splitting methods applied to conservation laws with stiff source terms, SIAM J. Numer. Anal., 35(5) (1998), pp. 1939–1968 (electronic). CrossRefGoogle Scholar
  38. 38.
    T. Tang and Z. H. Teng, Error bounds for fractional step methods for conservation laws with source terms, SIAM J. Numer. Anal., 32(1) (1995), pp. 110–127. CrossRefGoogle Scholar
  39. 39.
    Y. Zhan, Viscosity solution theory of a class of nonlinear degenerate parabolic equations. I. Uniqueness and existence of viscosity solutions, Acta Math. Appl. Sinica (English Ser.), 13(2) (1997), pp. 136–144. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Centre of Mathematics for Applications (CMA)University of OsloLysakerNorwayNorway

Personalised recommendations