Skip to main content
Log in

A Newton-Picard Collocation Method for Periodic Solutions of Delay Differential Equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a collocation method with an iterative linear system solver to compute periodic solutions of a system of autonomous delay differential equations (DDEs). We exploit the equivalence of the linearized collocation system and the discretization of the linearized periodic boundary value problem (BVP). This linear BVP is solved using a variant of the Newton-Picard method [Int. J. Bifurcation Chaos, 7 (1997), pp. 2547–2560]. This method combines a direct method in the low-dimensional subspace of the weakly stable and unstable modes with an iterative solver in the high-dimensional orthogonal complement. As a side effect, we also obtain good estimates for the dominant Floquet multipliers. We have implemented the method in the DDE-BIFTOOL environment to test our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. M. Ascher, R. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, vol. 13 of Classics in Applied Mathematics, SIAM, 1995.

  2. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, vol. 11 of Software, Environments, and Tools, SIAM, 2000.

  3. J. Bélair and M. Mackey, A model for the regulation of mammalian platelet production, Ann. N. Y. Acad. Sci., 504 (1987), pp. 280–282.

  4. O. Diekmann, S. van Gils, S. Verduyn Lunel, and H.-O. Walther, Delay Equations, vol. 110 of Applied Mathematical Sciences, Springer, 1995.

  5. E. Doedel, A. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Sandstede, and X.-J. Wang, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations, Technical Report, Dept. of Computer Science, Concordia University, 1998.

  6. E. Doedel, H. Keller, and J. Kernévez, Numerical analysis and control of bifurcation problems, part II: Bifurcation in infinite dimensions, Int. J. Bifurcation Chaos, 1 (1991), pp. 745–772.

  7. E. Doedel and J. Kernévez, AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations, Applied Mathematics Report, California Institute of Technology, Pasadena, U.S.A., 1986.

  8. K. Engelborghs, Numerical Bifurcation Analysis of Delay Differential Equations, PhD thesis, Department of Computer Science, K. U. Leuven, Leuven, Belgium, May 2000.

  9. K. Engelborghs and E. Doedel, Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations, Numer. Math., 91 (2002), pp. 627–648.

  10. K. Engelborghs, K. Lust, and D. Roose, Direct computation of period doubling bifurcation points of large-scale systems of ODEs using a Newton-Picard method, IMA J. Numer. Anal., 19 (1999), pp. 525–547.

    Google Scholar 

  11. K. Engelborghs, T. Luzyanina, K. in ’t Hout, and D. Roose, Collocation methods for the computation of periodic solutions of delay differential equations, SIAM J. Sci. Comput., 22 (2000), pp. 1593–1609.

  12. K. Engelborghs, T. Luzyanina, and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Softw., 28 (2002), pp. 1–21.

  13. K. Engelborghs, T. Luzyanina, and G. Samaey, DDE-BIFTOOL v. 2.00 User Manual: A Matlab Package for Numerical Bifurcation Analysis of Delay Differential Equations, Report TW 330, Department of Computer Science, K. U. Leuven, Leuven, Belgium, Oct. 2001.

  14. J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, vol. 99 of Applied Mathematical Sciences, Springer, 1993.

  15. K. Lust, Numerical Bifurcation Analysis of Periodic Solutions of Partial Differential Equations, PhD thesis, Department of Computer Science, K. U. Leuven, Leuven, Belgium, Dec. 1997.

  16. K. Lust, D. Roose, A. Spence, and A. Champneys, An adaptive Newton-Picard algorithm with subspace iteration for computing periodic solutions, SIAM J. Sci. Comput., 19 (1998), pp. 1188–1209.

  17. T. Luzyanina and K. Engelborghs, Computing Floquet multipliers for functional differential equations, Int. J. Bifurcation Chaos, 11 (2002), pp. 737–753.

    Google Scholar 

  18. T. Luzyanina, K. Engelborghs, K. Lust, and D. Roose, Computation, continuation and bifurcation analysis of periodic solutions of delay differential equations, Int. J. Bifurcation Chaos, 7 (1997), pp. 2547–2560.

    Google Scholar 

  19. Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, 1992.

  20. L. Shayer and S. Campbell, Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays, SIAM J. Appl. Math., 61 (2000), pp. 673–700.

    Google Scholar 

  21. R. Weiss, The application of implicit Runge-Kutta and collocation methods to boundary value problems, Math. Comp., 28 (1974), pp. 449–464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koen Verheyden or Kurt Lust.

Additional information

AMS subject classification (2000)

65J15, 65P30, 65Q05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verheyden, K., Lust, K. A Newton-Picard Collocation Method for Periodic Solutions of Delay Differential Equations. Bit Numer Math 45, 605–625 (2005). https://doi.org/10.1007/s10543-005-0013-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-005-0013-4

Key words

Navigation