BIT Numerical Mathematics

, Volume 44, Issue 4, pp 619–629

# Incomplete Orthogonal Distance Regression

• A. Atieg
• G. A. Watson
Article

## Abstract

A common method of fitting curves and surfaces to data is to minimize the sum of squares of the orthogonal distances from the data points to the curve or surface, a process known as orthogonal distance regression. Here we consider fitting geometrical objects to data when some orthogonal distances are not available. Methods based on the Gauss–Newton method are developed, analyzed and illustrated by examples.

## Keywords

least squares orthogonal distances Gauss–Newton method

## References

1. 1.
A. Atieg and G. A. Watson, A class of methods for fitting a curve or surface to data by minimizing the sum of squares of orthogonal distances, J. Comp. and Appl. Math., 158 (2003), pp. 277–296. Google Scholar
2. 2.
S. J. Ahn, W. Rauh, and M. Recknagel, Geometric fitting of lines, plane, circle, sphere and ellipse, ABW-Workshop 6, Technische Akademie Esslingen, 25.-26.01.1999, 1999. Google Scholar
3. 3.
S. J. Ahn, W. Rauh, and H.-J. Warnecke, Best-fit of implicit surfaces and plane curves, in T. Lyche and L. L. Schumaker (eds), Mathematical Methods for Curves and Surfaces: Oslo 2000, Vanderbilt University Press, 2001. Google Scholar
4. 4.
S. J. Ahn, W. Rauh, and H.-J. Warnecke, Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola, Pattern Recognition, 34 (2001), pp. 2283–2303. Google Scholar
5. 5.
S. J. Ahn, E. Westkaemper, and W. Rauth, Orthogonal distance fitting of parametric curves and surfaces, in J. Levesley, I. Anderson, and J. Mason (eds), Algorithms for Approximation IV, University of Huddersfield, 2002, pp. 122–129. Google Scholar
6. 6.
M. Bartholomew-Biggs, B. P. Butler, and A. B. Forbes, Optimization algorithms for generalized distance regression in metrology, in P. Ciarlini, A. B. Forbes, F. Pavese, and D. Richter (eds), Advanced Mathematical and Computational Tools in Metrology IV, Series on Advances in Mathematics for Applied Sciences, Vol. 53, World Scientific, Singapore, 2000, pp. 21–31. Google Scholar
7. 7.
Å. Björck, QR factorization of the Jacobian in some structured nonlinear least squares problems, in S. van Huffel and P. Lemmerling (eds), Total Least Squares and Errors-in-Variables Modeling, Kluwer, Dordrecht, 2002, pp. 225–234. Google Scholar
8. 8.
P. T. Boggs, R. H. Byrd, and R. B. Schnabel, A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. Stat. Comp., 8 (1987), pp. 1052–1078. Google Scholar
9. 9.
K. Brüntjen, Orthogonale Anpassung mit speziellen Kurven und Flächenstücken, Diplomarbeit, Universität Oldenburg, 1997. Google Scholar
10. 10.
K. Brüntjen and H. Späth, Incomplete total least squares, Num. Math., 81 (1999), 521–538. Google Scholar
11. 11.
B. P. Butler, M. G. Cox, and A. B. Forbes, The reconstruction of workpiece surfaces from probe coordinate data, in R. B. Fisher (ed.), Design and Application of Curves and Surfaces, Oxford University Press, Oxford, 1994, pp. 99–116. Google Scholar
12. 12.
A. B. Forbes, Least squares best fit geometric elements, in J. C. Mason and M. G. Cox (eds), Algorithms for Approximation II, Chapman and Hall, London, 1990, pp. 311–319. Google Scholar
13. 13.
H.-P. Helfrich and D. Zwick, A trust region method for implicit orthogonal distance regression, Numer. Alg., 5 (1993), pp. 535–545. Google Scholar
14. 14.
H.-P. Helfrich and D. Zwick, A trust region algorithm for parametric curve and surface fitting, J. Comp. Appl. Math., 73 (1996), pp. 119–134. Google Scholar
15. 15.
D. M. Sourlier, Three dimensional feature independent bestfit in coordinate metrology, PhD thesis, ETH Zurich, 1995. Google Scholar
16. 16.
H. Späth, Orthogonal least squares fitting by conic sections, in S. Van Huffel (ed.), Recent Advances in Total Least Squares and Errors-in-Variables Techniques, SIAM, Philadelphia, 1997. Google Scholar
17. 17.
H. Späth, Least squares fitting with rotated paraboloids, Mathematical Communications, 6 (2001), pp. 173–179. Google Scholar
18. 18.
R. Strebel, D. Sourlier, and W. Gander, A comparison of orthogonal least squares fitting in coordinate metrology, in S. Van Huffel (ed.), Recent Advances in Total Least Squares and Errors-in-Variables Techniques, SIAM, Philadelphia, 1997, pp. 249–258. Google Scholar
19. 19.
D. A. Turner, The approximation of Cartesian co-ordinate data by parametric orthogonal distance regression, PhD thesis, University of Huddersfield, 1999. Google Scholar
20. 20.
D. S. Zwick, Applications of orthogonal distance regression in metrology, in S. Van Huffel (ed.), Recent Advances in Total Least Squares and Errors-in-Variables Techniques, SIAM, Philadelphia, 1997, pp. 265–272. Google Scholar