BIT Numerical Mathematics

, Volume 44, Issue 4, pp 699–709 | Cite as

Energy Conservation with Non-Symplectic Methods: Examples and Counter-Examples



Energy conservation of numerical integrators is well understood for symplectic one-step methods. This article provides new insight into energy conservation with non-symplectic methods. Sufficient conditions and counter-examples are presented.


Hamiltonian systems energy conservation backward error analysis symmetric and symplectic methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms, J. Statist. Phys., 74 (1994), pp. 1117–1143. Google Scholar
  2. 2.
    J. C. Butcher, An algebraic theory of integration methods, Math. Comput., 26 (1972), pp. 79–106. Google Scholar
  3. 3.
    E. Hairer, Backward analysis of numerical integrators and symplectic methods, Annals of Numerical Mathematics, 1 (1994), pp. 107–132. Google Scholar
  4. 4.
    E. Hairer and C. Lubich, The life-span of backward error analysis for numerical integrators, Numer. Math., 76 (1997), pp. 441–462. Erratum: Google Scholar
  5. 5.
    E. Hairer and C. Lubich, Symmetric multistep methods over long times, Numer. Math., 97 (2004), pp. 699–723. Google Scholar
  6. 6.
    E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, Vol. 31, Springer, Berlin, 2002. Google Scholar
  7. 7.
    E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd edn, Springer Series in Computational Mathematics, Vol. 8, Springer, Berlin, 1993. Google Scholar
  8. 8.
    E. Hairer and G. Wanner, On the Butcher group and general multi-value methods, Computing, 13 (1974), pp. 1–15. Google Scholar
  9. 9.
    R. I. McLachlan and M. Perlmutter, Energy drift in reversible time integration, Preprint, 2003. Google Scholar
  10. 10.
    J. M. Sanz-Serna and L. Abia, Order conditions for canonical Runge–Kutta schemes, SIAM J. Numer. Anal., 28 (1991), pp. 1081–1096. Google Scholar
  11. 11.
    P. F. Tupper, Ergodicity and numerical simulation, Preprint, 2003. Google Scholar
  12. 12.
    H. Yoshida, Non-existence of the modified first integral by symplectic integration methods. II. Kepler problem, Celestial Mech. Dynam. Astronom., 83(1–4) (2002), pp. 355–364. Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.INRIA RennesRennes CedexFrance
  2. 2.Section de MathématiquesUniv. de GenèveGenève 24Switzerland

Personalised recommendations