Biochemistry (Moscow)

, Volume 70, Issue 9, pp 1011–1014 | Cite as

Hemolysis of Human Red Blood Cells by Riboflavin-Cu(II) System: Enhancement by Azide

  • I. Ali
  • N. Sakhnini
  • I. Naseem


Photoactivated riboflavin in the presence of Cu(II) generates reactive oxygen species (ROS) which can hemolyze human red blood cells (RBC). In the present work we examined the effect of sodium azide (NaN3) on RBC in the presence of riboflavin and Cu(II). The addition of NaN3 to the riboflavin-Cu(II) system enhanced K+ loss and hemolysis. The extent of K+ loss and hemolysis were time and concentration dependent. Bathocuproine, a Cu(I)-sequestering agent, inhibited the hemolysis completely. Among various free radical scavengers used to identify the major ROS involved in the reaction, thiourea was found to be the most effective scavenger. Thiourea caused almost 85%inhibition of hemolysis suggesting that ·OH is the major ROS involved in the reaction. Using spectral studies and other observations, we propose that when NaN3 is added to the riboflavin-Cu(II) system, it inhibits the photodegradation of riboflavin resulting in increased ·OH generation. Also, the possibility of azide radical formation and its involvement in the reaction could not be ruled out.

Key words

riboflavin copper sodium azide reactive oxygen species RBC hemolysis 



reactive oxygen species


red blood cells


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halliwell, B., and Gutteridge, J. M.C. (1985) Free Radicals in Biology and Medicine, Clarendon Press, Oxford.Google Scholar
  2. 2.
    George-Hyslop, P. H. (2000) Sci. Am., 283, 76–83.Google Scholar
  3. 3.
    Halliwell, B. (1987) FASEB J., 1, 358–364.PubMedGoogle Scholar
  4. 4.
    Babior, B. M. (1978) New Eng. J. Med., 298, 259–268.Google Scholar
  5. 5.
    Miller, R. A., and Britigan, B. E. (1995) J. Invest. Med., 43, 39–49.Google Scholar
  6. 6.
    Naseem, I., Ahmad, M., Bhat, R., and Hadi, S. M. (1993) Fd. Chem. Toxicol., 31, 589–597.CrossRefGoogle Scholar
  7. 7.
    Jazzar, M., and Naseem, I. (1994) Biochem. Mol. Biol. Int., 34, 883–895.PubMedGoogle Scholar
  8. 8.
    Ali, I., Ghatasheh, M. K. M., and Naseem, I. (2000) Biochim. Biophys. Acta, 1523, 225–229.PubMedGoogle Scholar
  9. 9.
    Naseem, I., Ahmad, M., and Hadi, S. M. (1988) Biosci. Rep., 8, 485–492.CrossRefPubMedGoogle Scholar
  10. 10.
    Jazzar, M. M., and Naseem, I. (1996) Free Rad. Biol. Med., 21, 7–14.CrossRefPubMedGoogle Scholar
  11. 11.
    Andley, U. P., and Clark, B. A. (1988) Exp. Eye Res., 47, 1–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Jedziniak, J., Arredondo, M., and Andley, U. P. (1987) Curr. Eye Res., 6, 345–350.PubMedGoogle Scholar
  13. 13.
    Silvia, E. (1979) Rad. Env. Biophys., 16, 71–79.CrossRefGoogle Scholar
  14. 14.
    Suzuki, Y., Miura, T., and Ogiso, T. (1982) J. Pharm. Dyn., 5, 568–575.Google Scholar
  15. 15.
    Andley, U. P., and Clark, B. A. (1988) Curr. Eye Res., 7, 571–579.PubMedGoogle Scholar
  16. 16.
    Knoblock, E., Mandys, F., and Hodr, R. (1988) J. Chrom., 428, 255–263.Google Scholar
  17. 17.
    Newburger, J., Combs, A. B., and Hsu, T. F. (1977) J. Pharm. Sci., 66, 1561–1564.PubMedGoogle Scholar
  18. 18.
    Bhatia, J., and Rassin, D. K. (1985) J. Parent. Nutr., 9, 491–495.Google Scholar
  19. 19.
    Frissell, W. R., Chung, C. W., and Mackenzie, C. G. (1956) J. Biol. Chem., 234, 1297–1302.Google Scholar
  20. 20.
    Tabatabaie, T., and Floyd, R. A. (1994) Arch. Biochem. Biophys., 314, 112–119.CrossRefPubMedGoogle Scholar
  21. 21.
    Clemens, M. R., and Waller, H. D. (1987) Chem. Phys. Lipids, 45, 251–268.CrossRefPubMedGoogle Scholar
  22. 22.
    Hoebeke, M., Schiuntmaker, H. J., Jannink, L. E., Dubbelman, T. M. A. R., Jakobs, A., and Vorst, A. V. D. (1997) Photochem. Photobiol., 66, 502–508.PubMedGoogle Scholar
  23. 23.
    Behrman, R. E., Brown, A. K., Currie, M. R., Hastings, J. W., Odell, G. B., Schaffer, R., Setlow, R. B., Vogl, T. B., Wurtman, R. J., Anderson, H. J., Kostowzki, H. J., and Simopoulos, A. P. (1974) J. Pediatr., 84, 135–s137.PubMedGoogle Scholar
  24. 24.
    Ali, S. M., and Olivo, M. (2003) Int. J. Oncol., 22, 751–756.PubMedGoogle Scholar
  25. 25.
    Yoshida, Y., Kashiba, K., and Niki, E. (1994) Biochim. Biophys. Acta, 1201, 165–172.PubMedGoogle Scholar
  26. 26.
    Frati, E., Khatib, A. M., Front, P., Panasyuk, A., Aprile, F., and Mitrovic, D. R. (1997) Free Rad. Biol. Med., 22, 1139–1144.CrossRefPubMedGoogle Scholar
  27. 27.
    Yokochi, N., Morita, T., and Yagi, T. (2003) J. Agr. Fd. Chem., 23, 2733–2736.CrossRefGoogle Scholar
  28. 28.
    Patridge, R. S., Monroe, S. M., Parks, J. K., Johnson, K., Parker, W. D., Eaton, G. R., and Eaton, S. S. (1994) Arch. Biochem. Biophys., 310, 210–217.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhao, R., Lind, J., Merenyl, G., and Eriksen, T. E. (1994) J. Am. Chem. Soc., 116, 12010–12015.CrossRefGoogle Scholar
  30. 30.
    Forni, L. G., and Willson, R. L. (1986) Biochem. J., 240, 897–903.PubMedGoogle Scholar
  31. 31.
    Alfassi, Z. B. (1985) J. Phys. Chem., 89, 3359–3363.CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  1. 1.Faculty of PharmacyApplied Science UniversityAmmanJordan
  2. 2.Department of Biochemistry, Faculty of Life SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations