Biochemistry (Moscow)

, Volume 70, Issue 7, pp 753–760 | Cite as

Identification of β-Lactamase Inhibitory Peptide Using Yeast Two-Hybrid System

  • Wei Sun
  • Youjia Hu
  • Jiawei Gong
  • Chunbao Zhu
  • Baoquan Zhu
Accelerated Publication


Random oligonucleotide fragments were designed and amplified by PCR and fused with the activating domain of pGAD424 to construct a random peptide library. The DNA fragment encoding β-lactamase was fused with the binding domain of pGBT9 (+2). Subsequently, using yeast two-hybrid system we found two positive clones encoding peptides P1 and P2 that have the ability to bind β-lactamase in vivo. The genes encoding P1 and P2 were cloned into pGEX-4T-1. GST-peptide fusion proteins were expressed in Escherichia coli and isolated by glutathione-Sepharose 4B affinity chromatography. Finally, P1 and P2 were cleaved from the fusion protein with thrombin and purified by ultrafiltration. Inhibition assay of peptides with β-lactamase in vitro indicated that only P1 has the ability to inhibit β-lactamase.

Key words

β-lactamase yeast two-hybrid system β-lactamase inhibitory peptide GST-peptide fusion system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Livermore, D. M. (1995) Clin. Microbiol. Rev., 8, 557–584.PubMedGoogle Scholar
  2. 2.
    Bush, K., Jacoby, G. A., and Medeiros, A. A. (1995) Antimicrob. Agents Chemother., 39, 1211–1233.PubMedGoogle Scholar
  3. 3.
    Ghuysen, J. M. (1991) Annu. Rev. Microbiol., 45, 37–67.CrossRefPubMedGoogle Scholar
  4. 4.
    Wiedemann, B., Kliebe, C., and Kresken, M. (1989) J. Antimicrob. Chemother., 24(Suppl. B), 1–22.Google Scholar
  5. 5.
    Petrosino, J., Cantu, C., III, and Palzkill, T. (1998) Trends Microbiol., 6, 323–327.CrossRefPubMedGoogle Scholar
  6. 6.
    Bush, K. (2002) Curr. Opin. Invest. Drugs, 3, 1284–1290.Google Scholar
  7. 7.
    Doran, J. L., Leskiw, B. K., Aippersbach, S., and Jensen, S. E. (1990) J. Bacteriol., 172, 4909–4918.PubMedGoogle Scholar
  8. 8.
    Strynadka, N. C., Jensen, S. E., Johns, K., Blanchard, H., Page, M., Matagne, A., Frere, J. M., and James, M. N. (1994) Nature, 368, 657–660.CrossRefPubMedGoogle Scholar
  9. 9.
    Petrosino, J., Rudgers, G., Gillbert, H., and Palzkill, T. (1999) J. Biol. Chem., 274, 2394–2400.CrossRefPubMedGoogle Scholar
  10. 10.
    Rudgers, G. W., and Palzkill, T. (1999) J. Biol. Chem., 274, 6963–6971.CrossRefPubMedGoogle Scholar
  11. 11.
    Rudgers, G. W., Huang, W., and Palzkill, T. (2001) Antimicrob. Agents Chemother., 45, 3279–3286.CrossRefPubMedGoogle Scholar
  12. 12.
    Vidal, M., and Endoh, H. (1999) Trends Biotechnol., 17, 374–381.CrossRefPubMedGoogle Scholar
  13. 13.
    Fields, S., and Song, O. (1989) Nature, 340, 245–246.CrossRefPubMedGoogle Scholar
  14. 14.
    Brent, R., and Ptashne, M. (1985) Cell, 43, 729–736.CrossRefPubMedGoogle Scholar
  15. 15.
    Ferrer, M., and Harrison, S. C. (1999) J. Virol., 73, 579–582.Google Scholar
  16. 16.
    Thompson, C., Merrill, A. R., and Mangroo, D. (2003) FEMS Microbiol. Lett., 218, 85–92.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • Wei Sun
    • 1
  • Youjia Hu
    • 2
  • Jiawei Gong
    • 2
  • Chunbao Zhu
    • 2
  • Baoquan Zhu
    • 2
  1. 1.School of MedicineTongji UniversityShanghaiChina
  2. 2.Department of Bio-PharmaceuticsShanghai Institute of Pharmaceutical IndustryShanghaiChina

Personalised recommendations