Biochemistry (Moscow)

, Volume 70, Issue 6, pp 664–671 | Cite as

Role of Positively Charged Residues Lys267, Lys270, and Arg411 of Cytochrome P450scc (Cyp11A1) in Interaction with Adrenodoxin

  • N. V. Strushkevich
  • T. N. Azeva
  • G. I. Lepesheva
  • S. A. Usanov


Cytochrome P450scc and adrenodoxin are redox proteins of the electron transfer chain of the inner mitochondrial membrane steroid hydroxylases. In the present work site-directed mutagenesis of the charged residues of cytochrome P450scc and adrenodoxin, which might be involved in interaction, was used to study the nature of electrostatic contacts between the hemeprotein and the ferredoxin. The target residues for mutagenesis were selected based on the theoretical model of cytochrome P450scc-adrenodoxin complex and previously reported chemical modification studies of cytochrome P450scc. In the present work, to clarify the molecular mechanism of hemeprotein interaction with ferredoxin, we constructed cytochrome P450scc Lys267, Lys270, and Arg411 mutants and Glu47 mutant of adrenodoxin and analyzed their possible role in electrostatic interaction and the role of these residues in the functional activity of the proteins. Charge neutralization at positions Lys267 or Lys270 of cytochrome P450scc causes no significant effect on the physicochemical and functional properties of cytochrome P450scc. However, cytochrome P450scc mutant Arg411Gln was found to exhibit decreased binding affinity to adrenodoxin and lower activity in the cholesterol side chain cleavage reaction. Studies of the functional properties of Glu47Gln and Glu47Arg adrenodoxin mutants indicate that a negatively charged residue in the loop covering the Fe2S2 cluster, being important for maintenance of the correct architecture of these structural elements of ferredoxin, is not directly involved in electrostatic interaction with cytochrome P450scc. Moreover, our results indicate the presence of at least two different binding (contact) sites on the proximal surface of cytochrome P450scc with different electrostatic input to interaction with adrenodoxin. In the binary complex, the positively charged sites of the proximal surface of cytochrome P450scc well correspond to the two negatively charged sites of adrenodoxin: the “interaction” domain site and the “core” domain site.

Key words

cytochrome P450scc site-directed mutagenesis heterologous expression protein-protein interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lambeth, J. D., Seybert, D. W., and Kamin, H. (1979) J. Biol. Chem., 254, 7255–7264.Google Scholar
  2. 2.
    Azeva, T. N., Gilep, A. A., Lepesheva, G. I., Strushkevich, N. V., and Usanov, S. A. (2001) Biochemistry (Moscow), 66, 564–575.Google Scholar
  3. 3.
    Coghlan, V. M., and Vickery, L. E. (1991) J. Biol. Chem., 266, 18606–18612.Google Scholar
  4. 4.
    Coghlan, V. M., and Vickery, L. E. (1992) J. Biol. Chem., 267, 8932–8935.Google Scholar
  5. 5.
    Lepesheva, G. I., Azeva, T. N., Strushkevich, N. V., Gilep, A. A., and Usanov, S. A. (2000) Biochemistry (Moscow), 65, 1409–1418.Google Scholar
  6. 6.
    Wada, A., and Waterman, M. R. (1992) J. Biol. Chem., 267, 22877–22882.Google Scholar
  7. 7.
    Usanov, S. A., Graham, S. E., Lepesheva, G. I., Azeva, T. N., Strushkevich, N. V., Gilep, A. A., Estabrook, R. W., and Peterson, J. A. (2002) Biochemistry, 41, 8310–8320.Google Scholar
  8. 8.
    Vijayakumar, S., and Salerno, J. C. (1992) Biochim. Biophys. Acta, 1160, 281–286.Google Scholar
  9. 9.
    Turko, I. V., Adamovich, T. B., Kirillova, N. M., Usanov, S. A., and Chashchin, V. L. (1988) Biokhimiya, 53, 1810–1816.Google Scholar
  10. 10.
    Adamovich, T. B., Pikuleva, I. A., Chashchin, V. L., and Usanov, S. A. (1989) Biochim. Biophys. Acta, 996, 247–253.Google Scholar
  11. 11.
    Zollner, A., Hannemann, F., Lisurek, M., and Bernhardt, R. (2002) J. Inorg. Biochem., 91, 644–654.Google Scholar
  12. 12.
    Lepesheva, G. I., Azeva, T. N., Strushkevich, N. V., Adamovich, T. B., Cherkesova, T. S., and Usanov, S. A. (1999) Biochemistry (Moscow), 64, 1079–1088.Google Scholar
  13. 13.
    Lepesheva, G. I., and Usanov, S. A. (1998) Biochemistry (Moscow), 63, 224–234.Google Scholar
  14. 14.
    Usanov, S. A., Chernogolov, A. A., Honkakoski, P., Lang, M., Passanen, M., Raunio, H., and Pelkonen, O. (1990) Biokhimiya, 55, 865–877.Google Scholar
  15. 15.
    Chu, J. W., and Kimura, T. (1973) J. Biol. Chem., 248, 2089–2094.Google Scholar
  16. 16.
    Omura, T., and Sato, R. (1964) J. Biol. Chem., 239, 2370–2378.Google Scholar
  17. 17.
    Peterson, J. A. (1971) Arch. Biochem. Biophys., 144, 678–693.Google Scholar
  18. 18.
    Guryev, O., Erokhin, V., Usanov, S., and Nicolini, C. (1996) Biochem. Mol. Biol. Int., 39, 205–214.Google Scholar
  19. 19.
    Ragone, R., Colonna, G., Balestrieri, C., Servillo, L., and Irace, G. (1984) Biochemistry, 23, 1871–1875.Google Scholar
  20. 20.
    Sugano, S., Morishima, N., Ikeda, H., and Horie, S. (1989) Analyt. Biochem., 182, 327–333.Google Scholar
  21. 21.
    Lepesheva, G. I., and Usanov, S. A. (1997) Biochemistry (Moscow), 62, 648–656.Google Scholar
  22. 22.
    Millett, F. S., and Geren, L. M. (1991) Meth. Enzymol., 206, 49–56.Google Scholar
  23. 23.
    Janin, J., and Chothia, C. (1990) J. Biol. Chem., 265, 16027–16030.Google Scholar
  24. 24.
    Gluck, A., and Wool, I. G. (2002) Biochim. Biophys. Acta, 1594, 115–126.Google Scholar
  25. 25.
    Vickery, L. E. (1997) Steroids, 62, 124–127.Google Scholar
  26. 26.
    Muller, J. J., Lapko, A., Bourenkov, G., Ruckpaul, K., and Heinemann, U. (2001) J. Biol. Chem., 276, 2786–2789.Google Scholar
  27. 27.
    Kurisu, G., Kusunoki, M., Katoh, E., Yamazaki, T., Teshima, K., Onda, Y., Kimata-Ariga, Y., and Hase, T. (2001) Nat. Struct. Biol., 8, 117–121.Google Scholar
  28. 28.
    Pochapsky, T. C., Lyons, T. A., Kazanis, S., Arakaki, T., and Ratnaswamy, G. (1996) Biochimie, 78, 723–733.Google Scholar
  29. 29.
    Hannemann, F., Schffler, B., Zoller, A., and Bernhardt, R. (2001) Proc. 12th Int. Conf. Cytochrome P450, 45.Google Scholar
  30. 30.
    Muller, J. J., Muller, A., Rottmann, M., Bernhardt, R., and Heinemann, U. (1999) J. Mol. Biol., 294, 501–513.Google Scholar
  31. 31.
    Holden, M., Mayhew, M., Bunk, D., Roitberg, A., and Vilker, V. (1997) J. Biol. Chem., 272, 21720–21725.Google Scholar
  32. 32.
    Lipscomb, J. D., Sligar, S. G., Namtvedt, M. J., and Gunsalus, I. C. (1976) J. Biol. Chem., 251, 1116–1124.Google Scholar
  33. 33.
    Kostic, M., Pochapsky, S. S., Obenauer, J., Mo, H., Pagani, G. M., Pejchal, R., and Pochapsky, T. C. (2002) Biochemistry, 41, 5978–5989.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • N. V. Strushkevich
    • 1
  • T. N. Azeva
    • 1
  • G. I. Lepesheva
    • 1
  • S. A. Usanov
    • 1
  1. 1.Institute of Bioorganic ChemistryNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations