Biochemistry (Moscow)

, Volume 70, Issue 4, pp 383–390 | Cite as

Comparative Analysis of Transcription Profiles of Helicobacter pylori Clinical Isolates

  • K. T. Momynaliev
  • S. I. Rogov
  • O. V. Selezneva
  • V. V. Chelysheva
  • T. A. Akopian
  • V. M. Govorun
Accelerated Publication


The transcription profiles of four Helicobacter pylori clinical isolates (two cag-negative and two cag-positive) were compared in stationary growth phase using a cDNA-macroarray. The correlation coefficient value between total transcription profiles of clinical isolates H. pylori varied from 0.70 to 0.83. For 44 groups of genes (total number 66) belonging to various functional classes of H. pylori, the correlation coefficient value between these isolates exceeded 0.7, and for 14 groups the value exceeded 0.9. These groups included genes encoding components involved in cell division, adaptations to atypical conditions, electron transport, salvage of nucleosides and nucleotides, glycolysis/gluconeogenesis, folding and stabilization of proteins, translation factors, anaerobic metabolism, and amino acids and amine metabolism. Expression of 52 genes significantly differed between H. pylori clinical isolates. Some of these genes determine microorganism virulence. They include: cytotoxin-associated gene (cagA), genes encoding neutrophil-activating protein (napA), major flagellar protein (flaA), and vacuolizing cytotoxin (vacA), some genes encoding outer membrane proteins (omp), urease alpha and beta subunits (ureA and ureB), and some regulatory proteins, and genes encoding stress-related proteins, such as the chaperone and heat shock protein genes (groEL and dnaK).

Key words

Helicobacter pylori cDNA-macroarray transcription profiles correlation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sherbakov, P. L. (1999) in Helicobacter pylori: Revolution in Gastroenterology (Ivashkin, V. T., Megro, F., and Lapina, T. L., eds.) [in Russian], Triada-X, Moscow.Google Scholar
  2. 2.
    Poundeyr, R. E., and Ng, D. (1995) Aliment. Pharmacol. Ther., 9, S33–S39.Google Scholar
  3. 3.
    Pretolani, S., Bonvicini, R., and Gasbarrini, G. (1997) in Helicobacter pylori. An Atlas (Malrertheiner, P., Michetti, P., and Price, A., eds.) Science Press Limited, London, pp. 2.1–2.6.Google Scholar
  4. 4.
    Blaser, M. J., Perez-Perez, G. I., Kleanthous, H., Cover, T. L., et al. (1995) Cancer Res., 55, 2111–2115.PubMedGoogle Scholar
  5. 5.
    Nomura, A., Stemmermann, G. N., Chyou, P. H., Kato, I., et al. (1991) New Engl. J. Med., 325, 1132–1136.PubMedGoogle Scholar
  6. 6.
    Parsonnet, J., Friedman, G. D., Vandersteen, D. P., Chang, Y., et al. (1991) New Engl. J.Med., 325, 1127–1131.PubMedGoogle Scholar
  7. 7.
    Peterson, W. L. (1991) New Engl. J. Med., 324, 1043–1048.PubMedGoogle Scholar
  8. 8.
    Gerhard, M., Rad, R., Prinz, C., and Naumann, M. (2002) Helicobacter, 7, S17–S23.Google Scholar
  9. 9.
    Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J., et al. (1999) Science, 284, 1328–1333.PubMedGoogle Scholar
  10. 10.
    Blaser, M. J. (1996) Aliment. Pharmacol. Ther., 10, S73–S77.Google Scholar
  11. 11.
    Atherton, J. C., Cao, P., Peek, R. M. J., Tummuru, M. K., et al. (1995) J. Biol. Chem., 270, 17771–17777.PubMedGoogle Scholar
  12. 12.
    Peek, R., Thompson, S., Donahue, J., Tham, K., et al. (1998) Proc. Assos. Am. Physicians, 110, 58–66.Google Scholar
  13. 13.
    Ilver, D., Arnquist, A., Ogren, J., Frick, I., et al. (1998) Science, 279, 373–377.CrossRefPubMedGoogle Scholar
  14. 14.
    Xiang, Z., Censini, S., Bayeli, P. F., Telford, J. L., et al. (1995) Infect. Immun., 63, 94–98.PubMedGoogle Scholar
  15. 15.
    Gerhard, M., Lehn, N., Neumayer, N., Boren, T., et al. (1999) Proc. Natl. Acad. Sci. USA, 96, 12778–12783.PubMedGoogle Scholar
  16. 16.
    Alm, R. A., and Trust, T. J. (1999) Mol. Med., 77, 834–846.Google Scholar
  17. 17.
    Tomb, J. F., White, O., Kerlavage, A. R., et al. (1997) Nature, 388, 539–547.CrossRefPubMedGoogle Scholar
  18. 18.
    Alm, R. A., Ling, L. S. L., Moir, D. T., et al. (1999) Nature, 397, 176–180.CrossRefPubMedGoogle Scholar
  19. 19.
    Salama, N., Guillemin, K., McDaniel, T. K., Sherlock, G., et al. (2000) Proc. Natl. Acad. Sci. USA, 97, 14668–14673.PubMedGoogle Scholar
  20. 20.
    Momynaliev, K. T., Smirnova, O. V., Kudryavtseva, L. V., and Govorun, V. M. (2003) Mol. Biol. (Moscow), 37, 625–633.Google Scholar
  21. 21.
    Chanto, G., Occhialini, A., Gras, N., Alm, R., et al. (2002) Microbiology, 148, 3671–3680.PubMedGoogle Scholar
  22. 22.
    Ang, S., Lee, C. Z., Peck, K., Sindici, M., Matrubutham, U., Gleeson, M. A., and Wang, J. T. (2001) Infect. Immun., 69, 1679–1686.PubMedGoogle Scholar
  23. 23.
    Wen, Y., Marcus, E. A., Matrubutham, U., Gleeson, M. A., Scott, D. R., and Sachs, G. (2003) Infect. Immun., 71, 5921–5939.PubMedGoogle Scholar
  24. 24.
    Allan, E., Clayton, C. L., McLaren, A., Wallace, D. M., and Wren, B. W. (2001) Microbiology, 147, 2285–2292.PubMedGoogle Scholar
  25. 25.
    Niehus, E., Gressmann, H., Ye, F., Schlapbach, R., Dehio, M., Dehio, C., Stack, A., Meyer, T. F., Suerbaum, S., and Josenhans, C. (2004) Mol. Microbiol., 52, 947–961.PubMedGoogle Scholar
  26. 26.
    Contreras, M., Thiberge, J. M., Mandrand-Berthelot, M. A., and Labigne, A. (2003) Mol. Microbiol., 49, 947–963.PubMedGoogle Scholar
  27. 27.
    Kim, N., Marcus, E. A., Wen, Y., Weeks, D. L., Scott, D. R., Jung, H. C., Song, I. S., and Sachs, G. (2004) Infect. Immun., 72, 2358–2368.PubMedGoogle Scholar
  28. 28.
    Josenhans, C., Niehus, E., Amersbach, S., Horster, A., Betz, C., Drescher, B., Hughes, K. T., and Suerbaum, S. (2002) Mol. Microbiol., 43, 307–322.PubMedGoogle Scholar
  29. 29.
    Thompson, L. J., Merrell, D. S., Neilan, A., Mitchell, H., Lee, A., and Falkow, S. (2003) Infect. Immun., 71, 2643–2655.PubMedGoogle Scholar
  30. 30.
    Marais, A., Mendz, G. L., Hazell, S. L., and Megraud, F. (1999) Microb. Mol. Biol. Rev., 63, 642–674.Google Scholar
  31. 31.
    Taylor, D. E., Eaton, M., Chang, N., and Salama, S. M. (1992) J. Bacteriol., 174, 6800–6806.PubMedGoogle Scholar
  32. 32.
    Van Doorn, N. E., Namavar, F., Kusters, J. G., van Rees, E. P., et al. (1998) FEMS Microbiol. Lett., 160, 145–150.PubMedGoogle Scholar
  33. 33.
    Marshall, D. G., Coleman, D. C., Sullivan, D. J., Xia, H., et al. (1996) J. Appl. Bacteriol., 81, 509–517.PubMedGoogle Scholar
  34. 34.
    Akopyants, N., Bukanov, N. O., Westblom, T. U., and Berg, D. E. (1992) Nucleic Acids Res., 20, 6221–6225.PubMedGoogle Scholar
  35. 35.
    Akopyants, N., Fradkov, A., Diatchenko, L., Hill, J., et al. (1998) Proc. Natl. Acad. Sci. USA, 95, 13108–13113.PubMedGoogle Scholar
  36. 36.
    Marshall, D. G., Dundon, W. G., Beesley, S. M., and Smyth, C. J. (1998) Microbiology, 144, 2925–2939.PubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • K. T. Momynaliev
    • 1
  • S. I. Rogov
    • 1
  • O. V. Selezneva
    • 1
  • V. V. Chelysheva
    • 1
  • T. A. Akopian
    • 1
  • V. M. Govorun
    • 1
  1. 1.Research Institute for Physico-Chemical MedicineMoscowRussia

Personalised recommendations