Biochemistry (Moscow)

, Volume 70, Issue 3, pp 357–365 | Cite as

Engineering of proteolytically stable NADPH-cytochrome P450 reductase

  • T. A. Bonina
  • A. A. Gilep
  • R. W. Estabrook
  • S. A. Usanov


NADPH-cytochrome P450 reductase (CPR) is a membrane-bound flavoprotein that interacts with the membrane via its N-terminal hydrophobic sequence (residues 1–56). CPR is the main electron transfer component of hydroxylation reactions catalyzed by microsomal cytochrome P450s. The membrane-bound hydrophobic domain of NADPH-cytochrome P450 reductase is easily removed during limited proteolysis and is the subject of spontaneous digestion of membrane-binding fragment at the site Lys56-Ile57 by intracellular trypsin-like proteases that makes the flavoprotein very unstable during purification or expression in E. coli. The removal of the N-terminal hydrophobic sequence of NADPH-cytochrome P450 reductase results in loss of the ability of the flavoprotein to interact and transfer electrons to cytochrome P450. In the present work, by replacement of the lysine residue (Lys56) with Gln using site directed mutagenesis, we prepared the full-length flavoprotein mutant Lys56Gln stable to spontaneous proteolysis but possessing spectral and catalytic properties of the wild type flavoprotein. Limited proteolysis with trypsin and protease from Staphylococcus aureus of highly purified and membrane-bound Lys56Gln mutant of the flavoprotein as well as wild type NADPH-cytochrome P450 reductase allowed localization of some amino acids of the linker fragment of NADPH-cytochrome P450 reductase relative to the membrane. During prolong incubation or with increased trypsin ratio, the mutant form showed an alternative limited proteolysis pattern, indicating the partial accessibility of another site. Nevertheless, the membrane-bound mutant form is stable to trypsinolysis. Truncated forms of the flavoprotein (residues 46-676 of the mutant or 57-676 of wild type NADPH-cytochrome P450 reductase) are unable to transfer electrons to cytochrome P450c17 or P4503A4, confirming the importance of the N-terminal sequence for catalysis. Based on the results obtained in the present work, we suggest a scheme of structural topology of the N-terminal hydrophobic sequence of NADPH-cytochrome P450 reductase in the membrane.

Key words

cytochrome P450 NADPH-cytochrome P450 reductase site-directed mutagenesis heterologous expression in E. coli affinity chromatography electron transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Philips, A. H., and Langdon, R. G. (1962) J. Biol. Chem., 237, 2652–2660.Google Scholar
  2. 2.
    Dignam, J. D., and Strobel, H. W. (1975) Biophys. Res. Commun., 63, 845–852.Google Scholar
  3. 3.
    Vermilion, J. L., Ballow, D. P., Massey, V., and Coon, M. J. (1981) J. Biol. Chem., 256, 266–277.Google Scholar
  4. 4.
    Porter, T. D., and Kasper, C. B. (1986) Biochemistry, 25, 1682–1687.Google Scholar
  5. 5.
    Kaderbhai, M. A., Morgan, R., and Kaderbhai, N. N. (2003) Arch. Biochem. Biophys., 412, 259–266.Google Scholar
  6. 6.
    Kida, Y., Ohgiya, S., Mihara, K., and Sakaguchi, M. (1998) Arch. Biochem. Biophys., 351, 175–179.Google Scholar
  7. 7.
    Yasukochi, Y., and Masters, B. S. S. J. (1976) Biol. Chem., 251, 5337–5344.Google Scholar
  8. 8.
    Gum, J. R., and Strobel, H. W. (1981) J. Biol. Chem., 256, 7478–7486.Google Scholar
  9. 9.
    Hayashi, S., Omata, Y., Sakamoto, H., Hara, T., and Noguchi, M. (2003) Protein Exp. Purif., 29, 1–7.Google Scholar
  10. 10.
    Black, S. D., and Coon, M. J. (1982) J. Biol. Chem., 257, 5929–5938.Google Scholar
  11. 11.
    Makovec, T., and Breskvar, K. J. (2002) Steroid Biochem. Mol. Biol., 82, 89–96.Google Scholar
  12. 12.
    Guryev, O. L., Gilep, A. A., Usanov, S. A., and Estabrook, R. W. (2001) Biochemistry, 40, 5018–5031.Google Scholar
  13. 13.
    Gilep, A. A., Estabrook, R. W., and Usanov, S. A. (2003) Biochemistry (Moscow), 68, 86–98.Google Scholar
  14. 14.
    Omura, T., and Sato, R. (1964) J. Biol. Chem., 239, 2370–2378.Google Scholar
  15. 15.
    Porter, T. D., Wilson, T. E., and Kasper, C. B. (1987) Arch. Biochem. Biophys., 254, 353–367.Google Scholar
  16. 16.
    Laemmli, U. K. (1970) Nature, 227, 680–685.Google Scholar
  17. 17.
    Gilep, A. A., Guryev, O. L., Usanov, S. A., and Estabrook, R. W. (2001) Arch. Biochem. Biophys., 390, 215–221.Google Scholar
  18. 18.
    Gilep, A. A., Guryev, O. L., Usanov, S. A., and Estabrook, R. W. (2001) Biochem. Biophys. Res. Commun., 284, 937–941.Google Scholar
  19. 19.
    Djordjevic, S., Roberts, D. L., Wang, M., Shea, T., Camitta, M. G., Masters, B. S., and Kim, J. J. (1995) Proc. Natl. Acad. Sci. USA, 92, 3214–3218.Google Scholar
  20. 20.
    Zhao, Q., Smith, G., Modi, S., Paine, M., Wolf, R. C., Tew, D., Lian, L. Y., Primrose, W. U., Roberts, G. C., and Driessen, H. P. (1996) J. Struct. Biol., 116, 320–325.Google Scholar
  21. 21.
    Yabusaki, Y., Murakami, H., Sakaki, T., Shibata, M., and Ohkawa, H. (1988) DNA, 10, 701–711.Google Scholar
  22. 22.
    Bozic, D., Engel, J., and Brancaccio, A. (1998) Matrix Biol., 17, 495–500.Google Scholar
  23. 23.
    Karlish, S. J., Goldshleger, R., and Jorgensen, P. L. (1993) J. Biol. Chem., 268, 3471–3478.Google Scholar
  24. 24.
    Kuma, H., Shinde, A. A., Howren, T. R., and Jennings, M. L. (2002) Biochemistry, 41, 3380–3388.Google Scholar
  25. 25.
    Yost, C. S., Hedgpeth, J., and Lingappa, V. R. (1983) Cell, 3, 759–766.Google Scholar
  26. 26.
    Gafvelin, G., Sakaguchi, M., Andersson, H., and von Heijne, G. (1997) J. Biol. Chem., 272, 6119–6127.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • T. A. Bonina
    • 1
  • A. A. Gilep
    • 1
  • R. W. Estabrook
    • 2
  • S. A. Usanov
    • 1
  1. 1.Institute of Bioorganic ChemistryNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Department of BiochemistryUniversity of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations