Biochemistry (Moscow)

, Volume 70, Issue 1, pp 79–84 | Cite as

Changes in antioxidant status of myocardium during oxidative stress under the influence of coenzyme Q10

  • V. L. Lakomkin
  • G. G. Konovalova
  • E. I. Kalenikova
  • I. V. Zabbarova
  • A. I. Kaminnyi
  • A. K. Tikhaze
  • V. Z. Lankin
  • E. K. Ruuge
  • V. I. Kapelko


Changes in myocardium were studied during oxidative stress induced by infusion of hydrogen peroxide in the coronary vessels of isolated rat heart. Moderate concentrations of H2O2 increased the heart rate but decreased the contractile force, whereas higher concentrations of H2O2 decreased both parameters and increased the end diastolic pressure. The effect of H2O2 was stable, cumulative, and was associated with disturbance in respiration of mitochondria, increased production of ROS in them, and decrease in activities of antioxidant enzymes in the myocardium. Changes in the antioxidant status of the myocardium induced by long-term addition of coenzyme Q10 into food was accompanied by decrease in the negative inotropic effect of H2O2, whereas the levels of superoxide dismutase and glutathione peroxidase after oxidative stress were virtually unchanged. The activities of these enzymes displayed a high positive correlation with the cardiac function. The findings suggest that coenzyme Q10 should increase resistance of the myocardium to oxidative stress not only by a direct antioxidant mechanism but also indirectly, due to increased protection of antioxidant enzymes.

Key words

isolated heart antioxidant protection oxidative stress mitochondria coenzyme Q10 hydrogen peroxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sabri, A., Byron, K. L., Samarel, A. M., Bell J., and Lucchesi, P. A. (1998) Circ. Res., 82, 1053–1062.PubMedGoogle Scholar
  2. 2.
    Bogoyevitch, M. A., Ng, D. C., Court, N. W., Draper, K. A., Dhillon, A., and Abas, L. (2000) J. Mol. Cell. Cardiol., 32, 1469–1480.PubMedGoogle Scholar
  3. 3.
    Zenkov, N. K., Lankin, V. Z., and Men’shikova, E. B. (2001) Oxidative Stress. Biochemical and Pathophysiological Aspects [in Russian], MAIK, Nauka/Interperiodika, Moscow, p. 343.Google Scholar
  4. 4.
    Benzie, I. F. (2000) Eur. J. Nutr., 39, 53–61.PubMedGoogle Scholar
  5. 5.
    Giugliano, D. (2000) Nutr. Metab. Cardiovasc. Dis., 10, 38–44.PubMedGoogle Scholar
  6. 6.
    Singal, P. K., Khaper, N., Farahmand, F., and Bello-Klein, A. (2000) Curr. Cardiol. Rep., 2, 206–211.PubMedGoogle Scholar
  7. 7.
    Lankin, V. Z., Tikhaze, A. K., and Belenkov, Yu. N. (2000) Kardiologiya, 40, 48–61.Google Scholar
  8. 8.
    Lankin, V. Z. (2003) in Free Radicals, Nitric Oxide, and Inflammation: Molecular, Biochemical, and Clinical Aspects(Tomasi, A., et al., eds.) Vol. 344, IOS Press, NATO Science Series, Amsterdam, pp. 8–23.Google Scholar
  9. 9.
    Lankin, V. Z., Tikhaze, A. K., and Belenkov, Yu. N. (2004) Kardiologiya, 44, 72–81.PubMedGoogle Scholar
  10. 10.
    Zenkov, N. K., Kandalintseva, N. V., Lankin, V. Z., Men’shikova, E. B., and Prosenko, A. E. (2003) in Phenolic Antioxidants[in Russian], Siberian Division, Russian Academy of Medical Sciences, Novosibirsk, p. 328.Google Scholar
  11. 11.
    Josephson, R. A., Silverman, H. S., Lakatta, E. G., Stern, M. D., and Zweier, J. L. (1991) J. Biol. Chem., 266, 2354–2361.PubMedGoogle Scholar
  12. 12.
    Onodera, T., Takemura., G., Oguro, T., and Ashraf, M. (1992) Can. J. Cardiol., 8, 989–997.PubMedGoogle Scholar
  13. 13.
    Skjelbakken, T., Valen, G., and Vaage, J. (1996) Scand. J. Clin. Lab. Invest., 56, 431–439.PubMedGoogle Scholar
  14. 14.
    Miki, S., Ashraf, M., Salka, S., and Sperelakis, N. (1988) J. Mol. Cell. Cardiol., 20, 1009–1024.PubMedGoogle Scholar
  15. 15.
    Vaage, J., Antonelli, M., Bufi, M., Irtun, O., DeBlasi, R. A., Corbucci, G. G., Gasparetto, A., and Semb, A. G. (1997) Free Rad. Biol. Med., 22, 85–92.PubMedGoogle Scholar
  16. 16.
    Forester, G. V., Taichman, G. C., and Keon, W. J. (1981) Can. J. Surg., 24, 227–231.PubMedGoogle Scholar
  17. 17.
    Shattock, M. J., Manning, A. S., and Hearse, D. J. (1982) Pharmacology, 24, 118–122.PubMedGoogle Scholar
  18. 18.
    Meerson, F. Z. (1987) Usp. Fiziol. Nauk, 18, 56–79.PubMedGoogle Scholar
  19. 19.
    Abete, P., Napoli, C., Santoro, G., Ferrara, N., Tritto, I., Chiariello, M., Rengo, F., and Ambrosio, G. (1999) J. Mol. Cell Cardiol., 31, 227–236.PubMedGoogle Scholar
  20. 20.
    Konz, K. H., Haap, M., Walsh, R. A., Burk, R. F., and Seipel, L. (1991) J. Trace Elem. Electrolytes Health Dis., 5, 87–93.PubMedGoogle Scholar
  21. 21.
    Csonka, C., Pataki, T., Kovacs, P., Muller, S. L., Schroeter, M. L., Tosaki, A., and Blasig, I. E. (2000) Free Rad. Biol. Med., 29, 612–619.PubMedGoogle Scholar
  22. 22.
    Ferrara, N., Abete, P., Ambrosio, G., Landino, P., Caccese, P., Cirillo, P., Oradei, A., Littaru, G. P., Chiariello, M., and Rengo, F. (1995) J. Pharmacol. Exp. Ther., 274, 858–865.PubMedGoogle Scholar
  23. 23.
    Lakomkin, V. L., Konovalova, G. G., Kalenikova, E. I., Zabbarova, I. V., Tikhaze, A. K., Tsyplenkova, V. G., Lankin, V. Z., Ruuge, E. K., and Kapelko, V. I. (2004) Biochemistry (Moscow), 69, 520–526.Google Scholar
  24. 24.
    Aebi, H. E. (1983) in Methods of Enzymatic Analysis(Bergmeyer, H. U., ed.) 3rd ed., Vol. 3, Verlag Chemie, pp. 273–286.Google Scholar
  25. 25.
    Lankin, V. Z., and Gurevich, S. M. (1976) Dokl. Akad. Nauk SSSR, 226, 705–708.PubMedGoogle Scholar
  26. 26.
    Beauchamp, C., and Fridovich, J. (1971) Analyt. Biochem., 44, 276–287.PubMedGoogle Scholar
  27. 27.
    Kitazake, M., and Marban, E. (1989) J. Physiol. (London), 414, 455–472.Google Scholar
  28. 28.
    Korkina, O. V., Khatkevich, A. N., Kapelko, V. I., and Ruuge, E. K. (2001) Kardiologiya, 41, 53–56.Google Scholar
  29. 29.
    Skulachev, V. P. (2001) Biochemistry (Moscow), 66, 1153–1156.Google Scholar
  30. 30.
    Kapelko, V. I., Lakomkin, V. L., Studneva, I. M., and Pisarenko, O. I. (2000) Kardiologiya, 40, 62–70.Google Scholar
  31. 31.
    Goldhaber, J. I., and Liu, E. (1994) J. Physiol. (London), 477, 135–147.Google Scholar
  32. 32.
    Wang, X., Takeda, S., Mochizuki, S., Jindal, R., and Dhalla, N. S. (1999) J. Cardiovasc. Pharmacol. Ther., 4, 41–48.PubMedGoogle Scholar
  33. 33.
    Kupriyanov, V. V., Korchazhkina, O. V., and Lakomkin, V. L. (1993) J. Mol. Cell Cardiol., 25, 1235–1247.PubMedGoogle Scholar
  34. 34.
    Venditti, P., Balestrieri, M., Di Meo, S., and De Leo, T. (1997) J. Endocrinol., 155, 151–157.PubMedGoogle Scholar
  35. 35.
    Janero, D. R., and Hreniuk, D. (1996) Am. J. Physiol., 270, 1735–1742.Google Scholar
  36. 36.
    Leichtweis, S., and Ji, L. L. (2001) Acta Physiol. Scand., 172, 1–10.PubMedGoogle Scholar
  37. 37.
    Li, T., Danelisen, I., and Singal, P. K. (2002) Mol. Cell Biochem., 232, 19–26.PubMedGoogle Scholar
  38. 38.
    Yamakura, F. (1984) Biochem. Biophys. Res. Commun., 122, 635–641.PubMedGoogle Scholar
  39. 39.
    Condell, R. A., and Tappel, A. L. (1983) Arch. Biochem. Biophys., 223, 407–416.PubMedGoogle Scholar
  40. 40.
    Haramaki, N., Stewart, D. B., Agarwal, S., Ikeda, H., Reznick, A. Z., and Packer, L. (1998) Free Rad. Biol. Med., 25, 329–339.PubMedGoogle Scholar
  41. 41.
    Konorev, E. A., Struck, A. T., Baker, J. E., Ramanujam, S., Thomas, J. P., Radi, R., and Kalyanaraman, B. (1993) Free Rad. Res. Commun., 19, 397–407.Google Scholar
  42. 42.
    Steare, S. E., and Yellon, D. M. (1994) Cardiovasc. Res., 28, 1096–1101.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. L. Lakomkin
    • 1
  • G. G. Konovalova
    • 1
  • E. I. Kalenikova
    • 1
  • I. V. Zabbarova
    • 1
  • A. I. Kaminnyi
    • 1
  • A. K. Tikhaze
    • 1
  • V. Z. Lankin
    • 1
  • E. K. Ruuge
    • 1
  • V. I. Kapelko
    • 1
  1. 1.Russian Research and Productive Cardiology ComplexMinistry of Health of Russian FederationMoscowRussia

Personalised recommendations