Bioscience Reports

, Volume 27, Issue 1–3, pp 53–67 | Cite as

Functional Diagnostics in Mitochondrial Diseases

  • Gabriele Siciliano
  • Leda Volpi
  • Selina Piazza
  • Giulia Ricci
  • Michelangelo Mancuso
  • Luigi Murri
Original Paper


Mitochondrial diseases (MD) with respiratory chain defects are caused by genetic mutations that determine an impairment of the electron transport chain functioning. Diagnosis often requires a complex approach with measurements of serum lactate, magnetic resonance spectroscopy (MRS), muscle histology and ultrastructure, enzymology, genetic analysis, and exercise testing. The ubiquitous distribution of the mitochondria in the human body explains the multiple organ involvement. Exercise intolerance is a common symptom of MD, due to increased dependence of skeletal muscle on anaerobic metabolism, with an excess lactate generation, phosphocreatine depletion, enhanced free radical production, reduced oxygen extraction and electron flux through the respiratory chain. MD treatment has included antioxidants (vitamin E, alpha lipoic acid), coenzyme Q10, riboflavin, creatine monohydrate, dichloroacetate and exercise training. Exercise is a particularly important tool in diagnosis as well as in the management of these diseases.


Mitochondrial myopathy Exercise Muscle fatigue 


  1. Agostino A, Invernizzi F, Tiveron C, Fagiolari G, Prelle A, Lamantea E, Giavazzi A, Battaglia G, Tatangelo L, Tiranti V, Zeviani M (2003) Constitutive knockout of Surf1 is associated with high embryonic lethality, mitochondrial disease and cytochrome c oxidase deficiency in mice. Hum Mol Genet 12:399–413PubMedCrossRefGoogle Scholar
  2. Agostino A, Valletta L, Chinnery PF, Ferrari G, Carrara F, Taylor RW, Schaefer AM, Turnbull DM, Tiranti V, Zeviani M (2003) Mutations of ANT1, Twinkle, and POLG1 in sporadic progressive external ophthalmoplegia (PEO). Neurology 60:1354–1356PubMedGoogle Scholar
  3. Andersen P, Henriksson J (1977) Training induced changes in the subgroups of human type II skeletal muscle fibres. Acta Physiol Scand 99:123–125PubMedGoogle Scholar
  4. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR,Drouin J, Eperon IC,Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization. Nature 290(5806):457–465Google Scholar
  5. Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA (2003) Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet 72:101–114PubMedCrossRefGoogle Scholar
  6. Antonicka H, Sasarman F, Kennway NG, Shoubridge EA (2006) The molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in patients with mutations in the mitochondrial translation factor EFG1. Hum Mol Genet 15:1835–1846PubMedCrossRefGoogle Scholar
  7. Argov Z, Bank WJ, Maris J, Peterson P, Chance B (1987) Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurobiology 37:257–262Google Scholar
  8. Argov Z, Lofberg M, Arnold DL (2000) Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 23:1316–1334PubMedCrossRefGoogle Scholar
  9. Aure K, Benoist JF, de Ogier Baulny H, Romero NB, Rigal O, Lombes A (2004) Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology 63:727–729PubMedGoogle Scholar
  10. Bai R-K, Wong L-JC (2000) Simultaneous detection and quantification of mitochondrial dna deletion(s), depletion, and over- replication in patients with mitochondrial disease. J Mol Diagn 7:613–622Google Scholar
  11. Barrientos A, Korr D, Tzagoloff A (2002) Shy1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh’s syndrome. EMBO J 21:43–52PubMedCrossRefGoogle Scholar
  12. Battersby BJ, Coredo-Osti JC, Shoubridge EA (2003) Nuclear genetic control of mitochondrial DNA segregation. Nat Genet 33:183–186PubMedCrossRefGoogle Scholar
  13. Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7:691–699PubMedCrossRefGoogle Scholar
  14. Bohr VA, Stevnsner T, de Souza-Pinto NC (2002) Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 286:127–134Google Scholar
  15. Bonne G, Seibel P, Possekel S, Marsac C, Kadenbach B (1993) Expression of human cytochrome c oxidase subunits during fetal development. Eur J Biochem 217:1099–1107PubMedCrossRefGoogle Scholar
  16. Boulet L, Karpati G, Shoubridge EA (1992) Distribution and threshold expression of the tRNA(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51:1187–1200PubMedGoogle Scholar
  17. Cao Z, Wanagat J, McKiernan SH, Aiken JM (2001) Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res 29:4502–4508PubMedCrossRefGoogle Scholar
  18. Cejudo P, Bautista J, Montemayor T, Villagomez R, Jimenez L, Ortega F, Campos Y, Sanchez H, Arenas J (2005) Exercise training in mitochondrial myopathy: a randomized controlled trial. Muscle Nerve 32:342–350PubMedCrossRefGoogle Scholar
  19. Clayton DA (1992) Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 7:453–478CrossRefGoogle Scholar
  20. Di Giovanni S, Mirabella M, Spinazzola A, Crociani P, Silvestri G, Broccolini A, Tonali P, Di Mauro S, Servidei S (2001) Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology 57:515–518PubMedGoogle Scholar
  21. Di Mauro S, Bonilla E, Zeviani M, Nakagawa M, De Vivo DC (1985) Mitochondrial myopathies. Ann Neurol 17:521–538CrossRefGoogle Scholar
  22. DiMauro S (1996) Mitochondrial myopathies: what next? J Inher Metab Dis 19:489–503PubMedCrossRefGoogle Scholar
  23. Di Mauro S, Moraes CT (1993) Mitochondrial encephalomyopathies. Arch Neurol 50:1197–1208Google Scholar
  24. Edwards RHT (1981) Human muscle function and fatigue. In: Porter R, Whelan J (eds) Human muscle fatigue: physiological mechanisms. Ciba Foundation Symposium 82. Pitman Medical, London, pp 1–18Google Scholar
  25. Fadic R, Johns DR (1996) Clinical spectrum of mitochondrial diseases. Sem Neurol 16:11–22Google Scholar
  26. Finsterer J, Obermann I, Milvay E (2000) Diagnostis yeald of the lactate stress test in 160 patients with suspected respiratory chain disorder. Metab Brain Dis 15:163–171PubMedCrossRefGoogle Scholar
  27. Dysgaard Jeppesen T, Olsen D, Vissing J (2003) Cycle ergometry is not a sensitive diagnostic test for mitochondrial myopathy. J Neurol 250:293–299CrossRefGoogle Scholar
  28. Gillis L, Kaye E (2002). Diagnosis and management of mitochondrial diseases. Pediatr Clin N Am 49:203–219CrossRefGoogle Scholar
  29. Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Kerlan V, Plouin PF, Rotig A, Jeunemaitre X (2002) Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma. J Clin Endocrinol Metab 87:4771–4774PubMedCrossRefGoogle Scholar
  30. Gironi M, Lamperti C, Nemni R, Moggio M, Comi G, Guerini FR, Ferrante P, Canal N, Naini A, Bresolin N, DiMauro S (2004) Late-onset cerebellar ataxia with hypogonadism and muscle coenzyme Q10 deficiency. Neurology 62:818–820PubMedGoogle Scholar
  31. Irrcher I, Adhihetty PJ, Joseph AM, Ljubicic V, Hood DA (2003) Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 33:783–793PubMedCrossRefGoogle Scholar
  32. Kemp GJ, Taylor DJ, Dunn JF, Frostick SP, Radda GK (1993a) Cellular energetics of dystrophic muscle. J Neurol Sci 116:201–206PubMedCrossRefGoogle Scholar
  33. Kemp GJ, Taylor DJ, Thompson CH et al (1993b) Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed 6:302–310PubMedCrossRefGoogle Scholar
  34. Klausen K, Andersen LB, Pelle I (1981) Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol Scand 113:9–16PubMedGoogle Scholar
  35. Kornblum C, Schroder R, Muller K, Vorgerd M, Eggers J, Bogdanow M, Papassotiropoulos A, Fabian K, Klockgether T, Zange J (2005) Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study. Eur J Neurol 12:300–309PubMedCrossRefGoogle Scholar
  36. Lalani SR, Vladutiu GD, Plunkett K, Lotze TE, Adesina AM, Scaglia F (2005) Isolated mitochondrial myopathy associated with muscle coenzyme Q10 deficiency. Arch Neurol 62:317–320PubMedCrossRefGoogle Scholar
  37. Lamantea E, Tiranti V, Bordoni A, Toscano A, Bono F, Servidei S, Papadimitriou A, Spelbrink H, Silvestri L, Casari G, Comi GP, Zeviani M (2002) Mutations of mitochondrial DNA polymerase A are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann Neurol 52:211–219PubMedCrossRefGoogle Scholar
  38. Lamperti C, Naini A, Hirano M, De Vivo DC, Bertini E, Servidei S, Valeriani M, Lynch D, Banwell B, Berg M, Dubrovsky T, Chiriboga C, Angelini C, Pegoraro E, DiMauro S (2003) Cerebellar ataxia and coenzyme Q10 deficiency. Neurology 60:1206–1208PubMedGoogle Scholar
  39. Leonard JV, Schapira AHV (2000a) Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet 355:299–304PubMedCrossRefGoogle Scholar
  40. McFarland R, Taylor RW, Turnbull DM (2002) The neurology of mitochondrial DNA disease. Lancet Neurol 1:343–351PubMedCrossRefGoogle Scholar
  41. McKenzie S, Philips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA (2000) Endurance exercise training attenuates leucine oxidation and BCOAD activation durino exercise in humans. Am J Physiol Endocrinol Metab 278:E580–E587PubMedGoogle Scholar
  42. Mac Rae HSH, Noakes TD, Dennis SC (1995) Role of decreased carbohydrate oxidation on slower rises in ventilation with increasing exercise intensity after training. Eur J Appl Physiol 71:523–529CrossRefGoogle Scholar
  43. Mancuso M, Salviati L, Sacconi S, Otaegui D, Camano P, Marina A, Bacman S, Moraes CT, Carlo JR, Garcia M, Garcia-Alvarez M, Monzon L, Naini AB, Hirano M, Bonilla E, Taratuto AL, DiMauro S, Vu TH (2002) Mitochondrial DNA depletion: mutations in thymidine kinase gene with myopathy and SMA. Neurology 59:1197–1202PubMedGoogle Scholar
  44. Musumeci O, Naini A, Slonim AE, Skavin N, Hadjigeorgiou GL, Krawiecki N, Weissman BM, Tsao CY, Mendell JR, Shanske S, De Vivo DC, Hirano M, DiMauro S (2001) Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology 56:849–855PubMedGoogle Scholar
  45. Naccarati A, Molinu S, Mancuso M, Siciliano G, Migliore L (2000) Cytogenetic damage in peripheral lymphocytes of mitochondrial disease patients. Neurol Sci 21:S963–S965Google Scholar
  46. Neumann HP, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, Schipper J, Klisch J, Altehoefer C, Zerres K, Januszewicz A, Eng C, Smith WM, Munk R, Manz T, Glaesker S, Apel TW, Treier M, Reineke M, Walz MK, Hoang-Vu C, Brauckhoff M, Klein-Franke A, Klose P, Schmidt H, Maier-Woelfle M, Peczkowska M, Szmigielski C, Eng C, Freiburg-Warsaw-Columbus Pheochromocytoma Study Group (2002) Germ-line mutations in nonsyndromic phaeochromocytoma. N Engl J Med 346:1459–1466Google Scholar
  47. Olsen DB, Orngreen MC, Vissing J (2005) Aerobic training improves exercise performance in facioscapulohumeral muscular dystrophy. Neurology 64:1064–1066PubMedGoogle Scholar
  48. Orngreen MC, Olsen DB, Vissing J (2005) Aerobic training in patients with myotonic dystrophy type 1. Ann Neurol 57:754–757PubMedCrossRefGoogle Scholar
  49. Rollins S, Prayson RA,McMahon JT, Cohen BH (2001) Diagnostic yield muscle biopsy in patients with clinical evidence of mitochondrial cytopathy. Am J Clin Pathol 116(3):326–330PubMedCrossRefGoogle Scholar
  50. Rotig A, Appelkvist EL, Geromel V, Chretien D, Kadhom N, Edery P, Lebideau M, Dallner G, Munnich A, Ernster L, Rustin P (2000) Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356:391–395PubMedCrossRefGoogle Scholar
  51. Rustin P, Rotig A (2002) Inborn errors of complex II: unusual human mitochondrial diseases. Biochim Biophys Acta 1553:117–122PubMedCrossRefGoogle Scholar
  52. Salviati L, Sacconi S, Rasalan MM, Kronn DF, Braun A, Canoll P, Davidson M, Shanske S, Bonilla E, Hays AP, Schon EA, DiMauro S (2002a) Cytochrome c oxidase deficiency due to a novel SCO2 mutation mimics Werdnig-Hoffmann disease. Arch Neurol 59:862–865PubMedCrossRefGoogle Scholar
  53. Salviati L, Hernandez-Rosa E, Walker WF, Sacconi S, DiMauro S, Schon EA, Davidson MM (2002b) Copper supplementation restores cytochrome c oxidase activity in cultured cells from patients with SCO2 mutations. Biochem J 363:321–327PubMedCrossRefGoogle Scholar
  54. Salviati L, Sacconi S, Mancuso M, Otaegui D, Camano P, Marina A, Rabinowitz S, Shiffman R, Thompson K, Wilson CM, Feigenbaum A, Naini AB, Hirano M, Bonilla E, DiMauro S, Vu TH (2002c) Mitochondrial DNA depletion and dGK gene mutations. Ann Neurol 52:311–317PubMedCrossRefGoogle Scholar
  55. Salviati L, Sacconi S, Murer L, Zacchello G, Franceschini L, Laverda AM, Basso G, Quinzii C, Angelini C, Hirano M, Naini AB, Navas P, DiMauro S, Montini G (2005) Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 65:606–608PubMedCrossRefGoogle Scholar
  56. Schagger H, Noack H, Halangk W, Brandt U, von Jagow G (1995) Cytochrome-c oxidase in developing rat heart. Enzymic properties and amino-terminal sequences suggest identity of the fetal heart and the adult liver isoform. Eur J Biochem 230:235–241PubMedCrossRefGoogle Scholar
  57. Schlame M, Towbin JA, Heerdt PM, Jehle R, DiMauro S, Blanck TJ (2002) Deficiency of tetralinoleoylcardiolipin in Barth syndrome. Ann Neurol 51:634–637PubMedCrossRefGoogle Scholar
  58. Sciacco M, Gasparo-Rippa P, Vu TH, Tanji K, Shanske S, Mendell JR, Schon EA, DiMauro S, Bonilla E (1998) Study of mitochondrial DNA depletion in muscle by single-fiber polymerase chain reaction. Muscle Nerve 21:1374–1381PubMedCrossRefGoogle Scholar
  59. Shitara H, Kaneda H, Sato A, Iwasaki K, Hayashi J-I, Taya C, Yonekawa H (2001) Non-invasive visualization of sperm mitochondria behaviour in transgenic mice with introduced green fluorescent protein (GFP). FEBS Lett 500:7–11PubMedCrossRefGoogle Scholar
  60. Shoffner JM, Wallace DC (1990) Oxidative phosphorylation diseases disorders of two genomes. Adv Hum Genet 19:267–330PubMedGoogle Scholar
  61. Shoubridge EA, Johns T, Karpati G (1997) Complete restoration of a wild-type mtDNA genotype in regenerating muscle fibres in a patient with a tRNA point mutation and mitochondrial encephalomyopathy. Hum Mol Genet 6:2239–2242PubMedCrossRefGoogle Scholar
  62. Shoubridge EA, Karpati G, Hastings KE (1990) Deletion mutants are functionally dominant over wild-type mitochondrial genomes in skeletal muscle fiber segments in mitochondrial disease. Cell 62:43–49PubMedCrossRefGoogle Scholar
  63. Siciliano G, Renna M, Manca ML, Prontera C, Zucchelli G, Ferrannini E, Murri L (1999) The relationship of plasma catecholamine and lactate during anaerobic threshold exercise in mitochondrial myopathies. Neuromuscul Disord 9:411–416PubMedCrossRefGoogle Scholar
  64. Siciliano G, Manca ML, Renna M, Prontera C, Mercuri A, Murri L (2000) Effects of aerobic training on lactate and catecholaminergic exercise responses in mitochondrial myopathies. Neuromuscul Disord 10:40–45PubMedCrossRefGoogle Scholar
  65. Sjodin B, Thorstensson A, Frith K, Karlsson J (1976) Effect of physical training on LDH activity and LDH isozyme pattern in human skeletal muscle. Acta Physiol Scand 97:150–157PubMedCrossRefGoogle Scholar
  66. Sobreira C, Hirano M, Shanske S, Keller RK, Haller RG, Davidson E, Santorelli FM, Miranda AF, Bonilla E, Mojon DS, Barreira AA, King MP, DiMauro S (1997) Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology 48:1238–1243PubMedGoogle Scholar
  67. Sperl W (1997) Diagnosis and therapy of mitochondriopathies. Wien Klin Wochenschr 109:93–99PubMedGoogle Scholar
  68. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (2000) Ubiquitinated sperm mitochondria, selective proteolysis and the regulation of mitochondrial inheritance in mammalian embryos. Biol of Reproduct 63:582–590CrossRefGoogle Scholar
  69. Taanman JW, Herzberg NH, De Vries H, Bolhuis PA, Van den Bogert C (1992) Steady-state transcript levels of cytochrome c oxidase genes during human myogenesis indicate subunit switching of subunit Via and co-expression of subunit VIIa isoforms. Biochim Biophys Acta 1139:155–162PubMedGoogle Scholar
  70. Taivassalo T, Matthews PM, De Stefano N, Sripathi N, Genge A, Karpati G, Arnold DL (1996) Combined aerobic training and dichloroacetate improve exercise capacity and indices of aerobic metabolism in muscle cytochrome oxidase deficiency. Neurology 47:529–534PubMedGoogle Scholar
  71. Taivassalo T, De Stefano N, Argov Z, Matthews PM, Chen J, Genge A, Karpati G, Arnold DL (1998) Effects of aerobic training in patients with mitochondrial myopathies. Neurology 50:1055–1060PubMedGoogle Scholar
  72. Taivassalo T, Shoubridge EA, Chen J, Kennaway NG, DiMauro S, Arnold DL, Haller RG (2001) Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol 50:133–141PubMedCrossRefGoogle Scholar
  73. Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG (2003) The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 126: 413PubMedCrossRefGoogle Scholar
  74. Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ, Haller RJ, Turnbull DM (2006) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129(Pt 12):3391–3401PubMedCrossRefGoogle Scholar
  75. Takahashi Y, Kako K, Kashiwabara S, Takehara A, Inada Y, Arai H, Nakada K, Kodama H, Hayashi J, Baba T, Munekata E (2002) Mammalian copper chaperone Cox17p has an essential role in activation of cytochrome C oxidase and embryonic development. Mol Cell Biol 22:7614–7621PubMedCrossRefGoogle Scholar
  76. Tarnopolsky M (2004) Exercise testing as a diagnostic entità in mitochondrial myopathies. Mitochondrion 4:529–542PubMedCrossRefGoogle Scholar
  77. Tarnopolsky MA, Beal MF (2001) Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 49:561–574PubMedCrossRefGoogle Scholar
  78. Tarnopolsky MA, RaHa S (2005) Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 37:2086–2093PubMedCrossRefGoogle Scholar
  79. The Mitochondrial Disease Foundation (2003) Scholar
  80. Tomasetti M, Littarru GP, Stocker R, Alleva R (1999) Coenzyme Q10 enrichment decreases oxidative DNA damage in human lymphocytes. Free Radic Biol Med 27:1027–1032PubMedCrossRefGoogle Scholar
  81. Triepels RH, van Den Heuvel LP, Trijbels JM, Smeitink JA (2001) Respiratory chain complex I deficiency. Am J Med Genet 106:37–45PubMedCrossRefGoogle Scholar
  82. Tzagoloff A, Myers AM (1986) Genetics of mitochondria biogenesis. Annu Rev Biochem 55:249–285PubMedCrossRefGoogle Scholar
  83. Van Goethem G, Martin JJ, Dermaut B, Lofgren A, Wibail A, Ververken D, Tack P, Dehaene I, Van Zandijcke M, Moonen M, Ceuterick C, De Jonghe P, Van Broeckhoven C (2003) Recessive POLG mutations presenting with sensory and ataxic neuropathy in compound heterozygote patients with progressive external ophthalmoplegia. Neuromuscul Disord 13:133–142PubMedCrossRefGoogle Scholar
  84. Van Maldergem L, Trijbels F, DiMauro S, Sindelar PJ, Musumeci O, Janssen A, Delberghe X, Martin JJ, Gillerot Y (2002) Coenzyme Q-responsive Leigh’s encephalopathy in two sisters. Ann Neuro l52:750–754CrossRefGoogle Scholar
  85. Visapaa I, Fellman V, Vesa J, Dasvarma A, Hutton JL, Kumar V, Payne GS, Makarow M, Van Coster R, Taylor RW, Turnbull DM, Suomalainen A, Peltonen L (2002) GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am J Hum Genet 71:863–876PubMedCrossRefGoogle Scholar
  86. Vissing J, Haller RG (2003) A diagnostic cycle test for McArdle’s disease. Ann Neurol 54:539–542PubMedCrossRefGoogle Scholar
  87. Walker UA, Collins S, Byrne E (1996) Respiratory chain encephalomyopathies: a diagnostic classification. Eur Neurol 36:260–267PubMedGoogle Scholar
  88. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488PubMedCrossRefGoogle Scholar
  89. Wang Y, Michikawa Y, Mallidis C, Bai Y, Woodhouse L,Y arasheski KE, Miller CA, Askanas V, Engel WK, Bhasin S, Attardi G (2001) Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci USA 27; 98(7):4022–4077Google Scholar
  90. Wasserman K, Whipp BJ, Koyal SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243PubMedGoogle Scholar
  91. Weltman A, Weltman JY, Womack CJ, Davis SE, Blumer JL, Gaesser GA, Hartman ML (1997) Exercise training decreases the growth hormone (GH) response to acute constant-load exercise. Med Sci Sports Exerc 29:669–676PubMedGoogle Scholar
  92. Zeviani M, Carelli V (2003) Mitochondrial disorders. Curr Opin Neurol 16:585–594PubMedCrossRefGoogle Scholar

Copyright information

© The Biochemical Society 2007

Authors and Affiliations

  • Gabriele Siciliano
    • 1
  • Leda Volpi
    • 1
  • Selina Piazza
    • 1
  • Giulia Ricci
    • 1
  • Michelangelo Mancuso
    • 1
  • Luigi Murri
    • 1
  1. 1.Department of Neuroscience, Section of NeurologyUniversity of PisaPisaItaly

Personalised recommendations