Bioscience Reports

, Volume 25, Issue 3–4, pp 181–190 | Cite as

Role of Sarco/Endoplasmic Reticulum Ca2+-ATPase in Thermogenesis

  • Leopoldo de Meis
  • Ana Paula Arruda
  • Denise P. Carvalho

Enzymes are able to handle the energy derived from the hydrolysis of phosphate compounds in such a way as to determine the parcel that is used for work and the fraction that is converted into heat. The sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) is a family of membrane-bound ATPases that are able to transport Ca2+ ion across the membrane using the chemical energy derived from ATP hydrolysis. The heat released during ATP hydrolysis by SERCA may vary from 10 up to 30 kcal/mol depending on the SERCA isoform used and on whether or not a Ca2+ gradient is formed across the membrane. Drugs such as heparin, dimethyl sulfoxide and the platelet-activating factor (PAF) are able to modify the fraction of the chemical energy released during ATP hydrolysis that is used for Ca2+ transport and the fraction that is dissipated in the surrounding medium as heat. The thyroid hormone 3,5,3′-triiodo L-thyronine (T3) regulates the expression and function of the thermogenic SERCA isoforms. Modulation of heat production by SERCA might be one of the mechanisms involved in the increased thermogenesis found in hyperthyroidism.


Ca2+-ATPase thermogenesis Ca2+ transport heat production ATP hydrolysis thyroid hormone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astrup, A., Buemann, B., Toubro, S., Ranneries, C., Raben, A. 1996Low resting metabolic rate in subjects predisposed to obesity: a role for thyroid statusAm. J. Clin. Nutr.63879883PubMedGoogle Scholar
  2. 2.
    Clausen, T., Hardeveld, C., Everts, M. E. 1991Significance of cation transport in control of energy metabolism and thermogenesisPhysiol. Rev.71733774PubMedGoogle Scholar
  3. 3.
    Janský, L. 1995Humoral thermogenesis and its role in maintaining energy balancePhysiol. Rev.75237259PubMedGoogle Scholar
  4. 4.
    Levine, J. A., Eberhardt, N. L., Jensen, M. D. 1999Role of nonexercise activity thermogenesis in resistance to fat gain in humansScience283212214CrossRefPubMedGoogle Scholar
  5. 5.
    Levine, J. A., Nygren, J., Short, K. R., Nair, K. S. 2003Effect of hyperthyroidism on spontaneous physical activity and energy expenditure in ratsJ. Appl. Physiol.94165170PubMedGoogle Scholar
  6. 6.
    Lowell, B. B., Spiegelman, B. M. 2000Toward a molecular understanding of adaptive thermogenesisNature404652660PubMedGoogle Scholar
  7. 7.
    Silva, J. E. 1995Thyroid hormone control of thermogenesis and energy balanceThyroid5481492PubMedGoogle Scholar
  8. 8.
    Silva, J. E. 2001The multiple contribution of thyroid hormone to heat production.J. Clin. lnvest.1083537CrossRefGoogle Scholar
  9. 9.
    Arruda, A. P., Da-Silva, W. S., Carvalho, D. P., Meis, L. 2003Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase.Biochem. J.375753760CrossRefPubMedGoogle Scholar
  10. 10.
    Barata, H., Meis, L. 2002Uncoupled ATP hydrolysis and thermogenic activity of the sarcoplasmic reticulum Ca2+-ATPase: coupling effects of dimethyl sulfoxide and low temperatureJ. Biol. Chem.2771686816872CrossRefPubMedGoogle Scholar
  11. 11.
    Da-Silva, W. S., Bomfim, F. M., Galina, A., Meis, L. 2004Heat of PPi hydrolysis varies depending on the enzyme used. Yeast and corn vacuolar pyrophosphataseJ. Biol. Chem.2794561345617CrossRefPubMedGoogle Scholar
  12. 12.
    De Meis L. (1998) Control of heat production by the Ca2+-ATPase of rabbit and trout sarcoplasmic reticulum. Am. J. Physiol. 274 (Cell Physiol. 43):C1738–C1744Google Scholar
  13. 13.
    Meis, L. 2001Role of the sarcoplasmic reticulum Ca2+-ATPase on heat production and thermogenesisBiosci. Rep.21113137Google Scholar
  14. 14.
    Meis, L. 2001Uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPaseJ. Biol. Chem.2762507825087CrossRefPubMedGoogle Scholar
  15. 15.
    Meis, L. 2003Brown adipose tissue Ca2+-ATPase: uncoupled ATP hydrolysis and thermogenic activityJ. Biol. Chem.2784185641861CrossRefPubMedGoogle Scholar
  16. 16.
    Meis, L., Bianconi, M. L., Suzano, V. A. 1997Control of energy fluxes by the sarcoplasmic reticulum Ca2+-ATPase: ATP hydrolysis, ATP synthesis and heat productionFEBS Lett.406201204CrossRefPubMedGoogle Scholar
  17. 17.
    Meis, L., Vianna, A. L. 1979Energy interconversion by the Ca2+-transport ATPase of Sarcoplasmic ReticulumAnnu. Rev. Biochem.48275292CrossRefPubMedGoogle Scholar
  18. 18.
    Mitidieri, F., Meis, L. 1999Ca2+ Release and heat production by the endoplasmic reticulum Ca2+-ATPase of blood platelets: effect of the platelets activating factorJ. Biol. Chem.2742834428350CrossRefPubMedGoogle Scholar
  19. 19.
    Reis, M., Farage, M., Souza, A. C., Meis, L. 2001Correlation between uncoupled ATPase hydrolysis and heat production by the sarcoplasmic reticulum Ca2+-ATPaseJ. Bio1. Chem.2764279342800CrossRefGoogle Scholar
  20. 20.
    Reis, M., Farage, M., Meis, L. 2002Thermogenesis and energy expenditure: control of heat production by the Ca(2+)-ATPase of fast and slow muscleMol. Membr. Biol.19301310CrossRefPubMedGoogle Scholar
  21. 21.
    Bianconi, M. L. 2003Calorimetric determination of thermodynamic parameters of reaction reveals different enthalpic compensations of the yeast hexokinase isozymesJ. Biol. Chem.2781870918713CrossRefPubMedGoogle Scholar
  22. 22.
    Lytton, J., Westin, M., Burk, S. E., Shull, G. E., MacLennan, D. H. 1992Functional comparions between isoforms of the sarcoplasmic reticulum family of calcium pumpsJ. Biol. Chem.2671448314489PubMedGoogle Scholar
  23. 23.
    MacLennan, D. H., Brandl, C. J., Korczak, B., Green, N. M. 1985Amino-acid sequence of Ca2+, Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequenceNature316696700CrossRefPubMedGoogle Scholar
  24. 24.
    Wuytack, F., Papp, B., Verboomen, H., Raeymaekers, L., Dode, L., Bobe, R., Enouf, J., Bokkala, S., Authi, K. S., Casteels, R. 1994A Sarco/endoplasmic reticulum Ca2+-ATPase 3-type Ca2+ pump is expressed in platelets in lymphyoid cells and in mast cellsJ. Biol. Chem.26914101416PubMedGoogle Scholar
  25. 25.
    Yu, X. and Ynesi, G. (1995) Variable stoichiometric efficiency of Co2+ and Sr2+ transport by the sarcoplasmic reticulum ATpase. J. Biol. Chem. 270:4361–4367Google Scholar
  26. 26.
    De Meis, L. (1981) The sarcoplasmic reticulum: transport and energy transduction. (E. Bittar, ed.), Wiley, New York, Vol. 2Google Scholar
  27. 27.
    Meis, L. 1998Control of heat produced during ATP hydrolysis by the sarcoplasmic reticulum Ca2+-ATPase in the absence of a Ca2+ gradient.Biochem. Biophys. Res. Commun.243598600CrossRefPubMedGoogle Scholar
  28. 28.
    Meis, L., Inesi, G. 1992Functional evidence of a transmembrane channel within the Ca2+ transport ATPase of sarcoplasmic reticulumFEBS Lett.2993335CrossRefPubMedGoogle Scholar
  29. 29.
    Fortea, M. I., Soler, F., Fernandez-Belda, F. 2000Insight into the uncoupling mechanism of sarcoplasmic reticulum ATPase using the phosphorylating substrate UTPJ. Biol. Chem.2751252112529CrossRefPubMedGoogle Scholar
  30. 30.
    Hasselbach, W. 1978Reversibility of the sarcoplasmic calcium pump.Biochim. Biophys. Acta5152353PubMedGoogle Scholar
  31. 31.
    Inesi, G. 1985Mechanism of Ca2+ transportAnnu. Rev. Physiol.47573601CrossRefPubMedGoogle Scholar
  32. 32.
    Inesi, G., Meis, L. 1989Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pumpJ. Biol. Chem.26459295936PubMedGoogle Scholar
  33. 33.
    Tanford, C. 1984Twenty questions concerning the reaction cycle of the sarcoplasmic reticulum calcium pump.CRC Crit. Revs. Biochem.17123151Google Scholar
  34. 34.
    Wolosker, H., Engelender, S., Meis, L. 1998Reaction mechanism of the sarcoplasmic reticulum Ca2+-ATPaseAdv. Mol. Cell Biol.23A131Google Scholar
  35. 35.
    Ribeiro, M. O., Suzy, D. C., Schultz, J. J., Chiellini, G., Scanlan, T. S., Bianco, A. C., Brent, G. A. 2001Thyroid hormone-sympathetic interaction and adaptative thermogenesis are thyroid hormone receptor isoform-specificJ. Clin. lnvest.1083537CrossRefGoogle Scholar
  36. 36.
    Bachman, E. S., Dhillon, H., Zhang, C., Cinti, S., Bianco, A. C., Kobilka, B. K., Lowell, B. 2002βAR signaling required for diet-induced thermogenesis and obesity resistanceScience297843845CrossRefPubMedGoogle Scholar
  37. 37.
    Boss, O., Muzzin, P., Giacobino, J. P. 1998The uncoupling proteins, a reviewEur. J. Endocrinol.13919CrossRefPubMedGoogle Scholar
  38. 38.
    Leaver, E. V., Papponi, P. 2002β adrenergic potentiation of endoplasmic reticulum Ca2+ release in brown fat cellsAm. J. Physiol.282C1016C1024Google Scholar
  39. 39.
    Nicholls, D. G., Locke, R. M. 1984Thermogenic mechanisms in brown fatPhysiol. Rev.64164PubMedGoogle Scholar
  40. 40.
    Nicholls, D. G., Rial, E. 1999A history of the first uncoupling protein, UCP1J. Bioenerg. Biomembr.31399406CrossRefPubMedGoogle Scholar
  41. 41.
    Skulachev, V. P. 1998Uncoupling: new approaches to an old problem of bioenergeticsBiochim. Biophys. Acta1363100124PubMedGoogle Scholar
  42. 42.
    Bianco, A. C., Silva, J. E. 1987Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissueJ. Clin. Invest.79295300PubMedGoogle Scholar
  43. 43.
    Bianco, A. C., Silva, J. E. 1987Optimal response of key enzymes and uncoupling protein to cold in BAT depends on local T3 generationAm. J. Physiol.253E255263PubMedGoogle Scholar
  44. 44.
    Johansson, C., Göthe, S., Forrest, D., Vennström, B., Thorén, P. 1999Cardiovascular phenotype and temperature control in mice lacking thyroid hormone receptor-βor both αl and βAm. J. Physiol.276H20006H2012Google Scholar
  45. 45.
    Wikström, L., Johansson, C., Saltó, C., Barlow, C., Barros, A. C., Baas, F., Forrest, D., Thorén, P., Vennström, B. 1998Abnormal heart rate and body temperature in mice lacking tyroid hormone receptor (α1The EMBO J.17455461CrossRefGoogle Scholar
  46. 46.
    Al-Adsani, H., Hoffer, L. J., Silva, J. E. 1997Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacementJ. Clin. Endocrinol. Metab.8211181125CrossRefPubMedGoogle Scholar
  47. 47.
    Christoffolete, M. A., Linardi, C. C., Jesus, L., Ebina, K. N., Carvalho, S. D., Ribeiro, M. O., Rabelo, R., Curcio, C., Martins, L., Kimura, E. T., Bianco, A. C. 2004Mice with targeted disruption of the Dio2 gene have cold-induced over expression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesisDiabetes53577584PubMedGoogle Scholar
  48. 48.
    Golozoubova, V., Gullberg, H., Matthias, A., Cannon, B., Vennstrom, B., Nedergaard, J. 2004Depressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all hormone-binding thyroid hormone receptorsMol Endocrinol.18384401CrossRefPubMedGoogle Scholar
  49. 49.
    Arai, M., Otsu, K., MacLennan, D. H., Alpert, N. R., Periasamy, M. 1991Effect of thyroid-hormone on the expression of messenger RNA encoding sarcoplasmic-reticulum proteinsCirc. Res.69266276PubMedGoogle Scholar
  50. 35.
    Moriscot, A. S., Sayen, M. R., Hartong, R., Wu, P., Dillmann, W. H. 1997Transcription of the rat sarcoplasmic reticulum Ca2+ adenosine triphosphatase gene is increased by 3, 5, 3′-triiodothyronine receptor isoform – specific interactions with the myocyte – specific enhancer factor-2aEndocrinology1382632CrossRefPubMedGoogle Scholar
  51. 51.
    Muller, A., Linden, G. C., Zuidwijk, M. J., Simonides Laarse, W. S. W. A., Hardeveld, C. 1994Differential effects of thyroid hormone on the expression of sarcoplasmic reticulum Ca(2+)-ATPase isoforms in rat skeletal muscle fibersBiochem. Biophys. Res. Commun.20310351042CrossRefPubMedGoogle Scholar
  52. 52.
    Nunes, M. T., Bianco, A. C., Migala, A., Agostini, B., Hasselbach, W. 1985Tyroxine induced transformation in sarcoplasmic reticulum of rabbit soleus and psoas musclesZ. Naturforsch.40c726734Google Scholar
  53. 53.
    Simonides, W. S., Brent, G. A., Thelens, M. H. M., Linden, C. G., Larsen, P. R., Hardeveld, C. 1996Characterization of the promoter of the rat sarcoplasmic endoplasmic reticulum Ca2+-ATPase I gene and analysis of thyroid hormone responsivenessJ. Biol. Chem.2713204832056CrossRefPubMedGoogle Scholar
  54. 54.
    Simonides, W. S., Thelen, M. H. M., Linden, C. G., Muller, A., Hardeveld, C. 2001Mechanism of thyroid-hormone regulated expression of SERCA genes in skeletal muscle: implications for thermogenesisBiosci. Rep.21139154CrossRefPubMedGoogle Scholar
  55. 55.
    Linden, G. C., Simonides, W. S., Hardeveld, C. 1992Thyroid hormone regulates Ca2+-ATPase mRNA levels of sarcoplasmic reticulum during neonatal development of fast skeletal muscleMol. Cell. Endocrinol.90125131CrossRefPubMedGoogle Scholar
  56. 56.
    Van der Linden, G. C., Simonides, W. S., Muller, A., van der Laarse, W. J., Vermeulen, J. L., Zuidwijk, M. J., Moorman, A. F., and van Hardeveld, C. (1996) Fiber specific regulation of Ca2+-ATPase isoform expression by thyroid hormone in rat skeletal muscle. Am. J. Physiol. 271 (Cell Physiol. 40):C1908–C1919Google Scholar
  57. 57.
    Yamada, T., Inashima, S., Matsunaga, S., Nara, I., Kajihara, H., Wada, M. 2004Different time course of changes in sarcoplasmic reticulum and myosin isoforms in rat soleus muscle at early stage of hyperthyroidismActa Physiol. Scand.1807987CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Leopoldo de Meis
    • 1
  • Ana Paula Arruda
    • 1
  • Denise P. Carvalho
    • 2
  1. 1.Instituto de Bioquímica Médica, Universidade Federal do Rio de JaneiroCidade UniversitáriaBrasil
  2. 2.Instituto de Biofisica Carlos Chagas F°, Universidade Federal do Rio de JaneiroCidade UniversitáriaBrasil

Personalised recommendations