Anthropogenic climate change as a monumental niche construction process: background and philosophical aspects

Abstract

Climate change has historically been an evolutionary determinant for our species, affecting both hominin evolutionary innovations and extinction rates, and the early waves of migration and expansion outside Africa. Today Homo sapiens has turned itself into a major geological force, able to cause a biodiversity crisis comparable to previous mass extinction events, shaping the Earth surface and impacting biogeochemical cycles and the climate at a global level. We argue that anthropogenically-driven climate change must be understood in terms of a monumental niche construction process, generating long-term ecological inheritance and eco-evolutionary feedbacks that are putting our health and well-being and those of future generations at risk. We then list five major sources of climate change counter-intuitiveness, highlighting how evolved cognitive biases and heuristics may stand in the way of providing effective responses within tight deadlines. Drawing on our framing of the climate breakdown, we finally call for an evolutionary perspective in approaching the adaptive challenge posed by climate change: we argue that putting the brakes on a genuine self-endangering evolutionary trap ultimately depends on our counteractive niche constructing abilities, played at the level of our institutional and innovation capacity.

This is a preview of subscription content, log in to check access.

References

  1. Abram NJ, Mc Gregor HV, Evans MN et al (2016) Early onset of industrial-era warming across the oceans and continents. Nature 536:411–418

    Google Scholar 

  2. Amel E, Manning C, Scott B, Koger S et al (2017) Beyond the roots of human inaction: Fostering collective effort towards ecosystem conservation. Science 356:275–279

    Google Scholar 

  3. Andrews TM, Delton AW, Kline R (2018) High-risk high-rewards investments to mitigate climate change. Nature Climate Change 8:890–894

    Google Scholar 

  4. Antón SC (2003) Natural history of Homo erectus. Yearb of Phys Anthr 46:126–170

    Google Scholar 

  5. Arens NC, West ID (2008) Press-pulse: a general theory of mass extinctions? Paleobiology 34:456–471

    Google Scholar 

  6. Averchenkova A, Bassi S (2016) Beyond the targets: assessing the political credibility of pledges for the Paris Agreement. Grantham Research Institute, Policy brief

    Google Scholar 

  7. Barnosky AD, Matzke N, Tomiya S (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Google Scholar 

  8. Boivin NL, Zeder MA, Fuller DQ et al (2016) Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proc Natl Acad Sci 113(23):6388–6396

    Google Scholar 

  9. Bowles S (2008) Being human. Conflict: altruism’s midwife. Nature 456:326–327

    Google Scholar 

  10. Boyd R, Richerson PJ (1985) Culture and the Evolutionary Process. Univ of Chicago Press, Chicago

    Google Scholar 

  11. Boyd R, Richerson PJ, Henrich J (2011) The cultural niche: Why social learning is essential for human adaptation. PNAS 108:10918–10925

    Google Scholar 

  12. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460

    Google Scholar 

  13. Budescu DV, Por H-H, Broomell SB, Smithson M (2014) The interpretation of IPCC probabilistic statements around the world. Nat Clim Change 4:508–512

    Google Scholar 

  14. Cardinale BJ, Duffy JE, Gonzales A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Google Scholar 

  15. Cavalli-Sforza LL, Feldman MW (1981) Cultural transmission and evolution: a quantitative approach. Princeton University Press

  16. Ceballos G, Ehrlich PR, Barnosky AD et al (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253

    Google Scholar 

  17. Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 114:E6089–E6096

    Google Scholar 

  18. Clark PU, Shakun JD, Marcott SA et al (2016) Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat Clim Change 6:360–369

    Google Scholar 

  19. Cohen S (2001) States of Denial: Knowing about atrocities and suffering. Polity Press, Cambridge

    Google Scholar 

  20. Cohen JM, Lajeunesse MJ, Rohr JR (2018) A global synthesis of animal phenological responses to climate change. Nat Clim Change 8:224

    Google Scholar 

  21. Cook J, Nuccitelli D, Green SA (2016) Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ Res Lett 11(4)

  22. Crutzen PJ, Stoermer EF (2000) The “Anthropocene”. Global Change Newsletter 41:17–18

    Google Scholar 

  23. Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the Anthropocene. Science 345:401–406

    Google Scholar 

  24. De Menocal PB (1995) Plio-Pleistocene African climate. Science 270:53–59

    Google Scholar 

  25. Ellis E (2016) Why is human niche construction transforming planet earth? RCC Perspect 5:63

    Google Scholar 

  26. Ellis E, Maslin M, Boivin NL et al (2016) Involve social scientists in defining the Anthropocene. Nature 540:192–193

    Google Scholar 

  27. Fawcett T, Hamblin S, Giraldeau L (2013) Exposing the behavioral gambit: the evolution of learning and decision rules. Behav Ecol 24(1):2–11

    Google Scholar 

  28. Franzen J (2019) What if we stopped pretending? The New Yorker, September 8.

  29. Gardiner S (2011) A perfect moral storm: the ethical tragedy of climate change. Oxford University Press, Oxford

    Google Scholar 

  30. Gigerenzer G, Gaissmaier W (2010) Heuristic decision making. Annu Rev Psychol 62(1):451–482

    Google Scholar 

  31. Gilovich T, Griffin D, Kahneman D (eds) (2002) Heuristics and biases: the psychology of intuitive judgment. Cambridge University Press, Cambridge

  32. Gosh A (2016) The great derangement. climate change and the unthinkable. The University of Chicago Press, Chicago

    Google Scholar 

  33. Grove M (2011) Change and variability in Plio-Pleistocene climates: modelling the hominin response. J Archaeol Sci 38:3038–3047

    Google Scholar 

  34. Grove M (2014) Evolution and dispersal under climatic instability: a simple evolutionary algorithm. Adapt Behav 22:235–254

    Google Scholar 

  35. Hardy BW, Jamieson KH (2016) Overcoming endpoint bias in climate change communication: the case of arctic sea ice trends. Environ Commun 11(2):205–217

    Google Scholar 

  36. Hartley D (2016) Anthropocene, capitalocene, and the problem of culture. In Moore JW (ed) Anthropocene of capitalocene? Nature, History, and the Crisis of Capitalism, pp 154–165

  37. Harvati K, Röding C, Bosman AM (2019) Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature 571:500–504

    Google Scholar 

  38. Hauser OP, Rand DG, Peysakhovich A, Nowak MA (2014) Cooperating with the future. Nature 511(7508):220–223

    Google Scholar 

  39. Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi KL, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Payne A, Seneviratne SI, Thomas A, Warren R, Zhou G (2018): Impacts of 1.5ºC global warming on natural and human systems. In: Global Warming of 1.5°C. An IPCC Special report

  40. Hönisch B, Ridgwell A, Schmidt DN (2012) The geological record of ocean acidification. Science 335:1058–1063

    Google Scholar 

  41. IDMC (2018) Global Report on Internal Displacement. Geneva.

  42. IPCC (2014a) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  43. IPCC (2014b) Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA-

  44. IPCC (2018) Summary for policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)].World Meteorological Organization, Geneva, Switzerland

  45. IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. www.ipbes.net

  46. Jacquet J, Jamieson D (2016) Soft but significant power in the Paris Agreement. Nat Clim Change 6:643–645

    Google Scholar 

  47. Jamieson D (2014) Reasons in a dark time. Why the struggle against climate change failed, and what it means for our future. Oxford University Press, Oxford

    Google Scholar 

  48. Johnson D, Levin S (2009) The tragedy of cognition: psychological biases and environmental inaction. Curr Sci 97(11)

  49. Kahan DM, Peters E, Wittlin M et al (2012) The polarizing impact of science literacy and numeracy on perceived climate change risks. Nat Clim Change 2:732–735

    Google Scholar 

  50. Kahneman D (2011) Thinking. Fast and Slow, Farrar, Straus and Giroux

    Google Scholar 

  51. Kahneman D, Tversky A (1982) On the study of statistical intuition. Cognition 12:123–141

    Google Scholar 

  52. Kendal JR, Tehrani JJ, Odling-Smee FJ (2011) Human niche construction theme issue. Phil Trans R Soc B 366 (1566)

  53. Kim J-S, Kug J-S, Jeong S-J et al (2017) Reduced North American terrestrial primary productivity linked to anomalous Artic warming. Nat Geosci 10:572–577

    Google Scholar 

  54. Kraemer MU, Sinka ME, Duka KA et al. (2015) The global distribution of the arbovirus vectors Aedes aegypti and A. albopictus. Elife 4: e08347

  55. Laibson D (1997) Golden eggs and hyperbolic discounting. Quart J Econ 112(2):443–477

    Google Scholar 

  56. Laland KN (2014) On evolutionary causes and evolutionary processes. Behav Process 117:97–104

    Google Scholar 

  57. Laland KN, O’Brien MJ (2012) Cultural niche construction: an introduction. Biol Theory 6:191–202

    Google Scholar 

  58. Laland KN, Sterelny K, Odling-Smee FJ et al (2011) Cause and effect in biology revisited: is Mayr's proximate–ultimate dichotomy still useful? Science 334:1512–1516

    Google Scholar 

  59. Laland KN, Odling-Smee FJ, Hoppitt W, Uller T (2013) More on how and why: cause and effect in biology revisited. Biol Philos 28:719–745

    Google Scholar 

  60. Laland KN, Matthews B, Feldman MW (2016) An introduction to niche construction theory. Evol Ecol 30:191–202

    Google Scholar 

  61. Leakey R, Lewin R (1992) The sixth extinction: patterns of life and the future of humankind. Doubleday, London

    Google Scholar 

  62. Low FM, Gluckman PD, Hanson MA (2019) Niche modification, human cultural evolution and the anthropocene. Trends Ecol Evol 34(10):883–884

    Google Scholar 

  63. Manzi G (2011) Before the emergence of Homo sapiens: overview on the early-to-middle Pleistocene fossil record (with a proposal about Homo heidelbergensis at the subspecific level). Int J Evol Biol 2011:582678

    Google Scholar 

  64. Maslin MA (2017) The cradle of humanity. Oxford University Press, Oxford

    Google Scholar 

  65. Maslin MA, Brierley CM, Milner AM et al (2014) East African climate pulses and early human evolution. Quat Sci Rev 101:1–17

    Google Scholar 

  66. Masson-Delmotte V, Schulz M, Abe-Ouchi A et al. (2013) Information from paleoclimate archives. In: Climate Change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  67. Matthews B, De Meester L, Jones CG et al (2014) Under niche construction: an operational bridge between ecology, evolution and ecosystem science. Ecol Monogr 84(2):245–263

    Google Scholar 

  68. Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A, Hollowed A, Kofinas G, Mackintosh A, Melbourne-Thomas J, Muelbert MMC, Ottersen G, Pritchard H, Schuur EAG (2019) Polar regions. In: IPCC special report on the ocean and cryosphere in a changing climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.

  69. Merilä JKK, Hoffman AA (2016) Evolutionary impacts of climate change. In: Oxford research encyclopedia of environmental science. Oxford University Press: New York

  70. Moore FC, Obradovich N, Lehner F, Baylis P (2019) Rapidly declining remarkability of temperature anomalies may obscure public perception of climate change. PNAS 116(11):4905–4910

    Google Scholar 

  71. Morton T (2018) Hyperobjects. Philosophy and ecology after the end of the world. The University of Minnesota Press, Minneapolis

    Google Scholar 

  72. National Research Council (2010) Understanding climate's influence on human evolution. National Academies Press, Washington

    Google Scholar 

  73. Odling-Smee FJ (2007) Niche inheritance: a possible basis for classifying multiple inheritance systems in evolution. Biol Theory 2:276–289

    Google Scholar 

  74. Odling-Smee FJ (2010) Niche Inheritance. In: Pigliucci M, Müller GB (eds) Evolution: the extended synthesis. MIT Press, Cambridge

    Google Scholar 

  75. Odling-Smee FJ, Laland KN (2011) Ecological inheritance and cultural inheritance: what are they and how do they differ? Biol Theory 6:220–230

    Google Scholar 

  76. Odling-Smee FJ, Feldman M, Laland KN (2003) Niche construction: the neglected process in evolution. In: Monographs in population biology, vol 37. Princeton University Press, Princeton

  77. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, Cambridge

    Google Scholar 

  78. Owen RB, Mujruri VM, Lowenstein TK et al (2018) Progressive aridification in East Africa over the last half million years and implications for human evolution. Proc Natl Acad Sci 115(44):11174–11179

    Google Scholar 

  79. Palumbi SR (2001) Humans as world’s greatest evolutionary force. Science 293:1786–1790

    Google Scholar 

  80. Parravicini A, Pievani T (2016) Multi-level human evolution: ecological patterns in hominin phylogeny. J Anthropol Sci (JASs) 94:167–182

    Google Scholar 

  81. Pauly D (1995) Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol Evol 10:430

    Google Scholar 

  82. Potts R (1998) Environmental hypotheses of hominin evolution. Yearb Phys Anthropol 41:93–136

    Google Scholar 

  83. Potts R (2012) Evolution and environmental change in early human prehistory. Annu Rev Anthropol 41:151–167

    Google Scholar 

  84. Potts R (2013) Hominin evolution in settings of strong environmental variability. Quat Sci Rev 73:1–13

    Google Scholar 

  85. Powers ST, Van Schaik CP, Lehmann L (2016) How institutions shaped the last major evolutionary transition to large-scale human societies. Phil Trans R Soc B 371:20150098

    Google Scholar 

  86. Powers ST, Van Schaik CP, Lehmann L (2019) Cooperation in large-scale human societies—What if anything, makes it unique, and how did it evolve? OSF Preprints

  87. Rafferty NE (2017) Effects of global change on insect pollinators: multiple drivers lead to novel communities. Curr Opin Ins Sci 23:1–6

    Google Scholar 

  88. Raftery AE, Zimmer A, Frierson DMW et al (2017) Less than 2°C warming by 2100 unlikely. Nat Clim Change 7:637–641

    Google Scholar 

  89. Rightmire GP (1998) Human evolution in the Middle Pleistocene: the role of Homo heidelbergensis. Evol Anthrop 6:218–227

    Google Scholar 

  90. Rightmire GP (2001) Patterns of hominid evolution and dispersal in the Middle Pleistocene. Quat Int 75(1):77–84

    Google Scholar 

  91. Rind D (1999) Complexity and climate. Science 284:105–107

    Google Scholar 

  92. Rito T, Vieira D, Silva M et al (2019) A dispersal of Homo sapiens from southern to eastern Africa immediately preceded the out-of-Africa migration. Sci Rep 9(1):1–10

    Google Scholar 

  93. Robertson BA et al (2013) Ecological novelty and the emergence of evolutionary traps. Trends Ecol Evol 28:552–560

    Google Scholar 

  94. Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475

    Google Scholar 

  95. Rockström J, Gaffney O, Rogelj J et al (2017) A roadmap for rapid decarbonization. Science 355(6331):1269–1271

    Google Scholar 

  96. Rodima-Taylor D, Olwig M, Chhetri N (2013) Adaptation as innovation, innovation as adaptation: an institutional approach to climate change. Appl Geogr 33:107–111

    Google Scholar 

  97. Root TL, Price JT, Hall KR et al (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Google Scholar 

  98. Ruddiman WF (2018) Three flaws in defining a formal ‘Anthropocene’. Prog Phys Geogr 42(4):451–461

    Google Scholar 

  99. Ruddiman WF, Fuller DQ, Kutzbach JE (2016) Late Holocene climate: Natural or anthropogenic? Rev Geophys 54:93–118

    Google Scholar 

  100. Rull V (2018) What If the 'Anthropocene' is not formalized as a new geological series/epoch? Quaternary 1(3):24

    Google Scholar 

  101. Santana C (2019) Waiting for the Anthropocene. Brit J Phil Sci 70:1073–1096

    Google Scholar 

  102. Schlaepfer MA et al (2002) Ecological and evolutionary traps. Trends Ecol Evol 17:474–480

    Google Scholar 

  103. Sharpe S (2019) Telling the boiling frog what he needs to know: why climate change risks should be plotted as probability over time. Geosci Commun 2:95–100

    Google Scholar 

  104. Shultz S, Maslin MA (2013) Early human speciation, brain expansion and dispersal influenced by African climate pulses. PLoS ONE 8(10):e76750

    Google Scholar 

  105. Shuman EK (2010) Global climate change and infectious diseases. N Engl J Med 362:1061–1063

    Google Scholar 

  106. Solomon S, Plattner GK, Knutti R et al (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709

    Google Scholar 

  107. Sörqvist P, Langeborg L (2019) Why people harm the environment although they try to treat it well: an evolutionary-cognitive perspective on climate compensation. Front Psychol 10:348

    Google Scholar 

  108. Spence A, Poortinga W, Pidgeon N (2012) The psychological distance of climate change. Risk Anal 32

  109. Steffen W, Sanderson A, Tyson P et al (2004) Global change and the earth system: a planet under pressure. The IGBP global change series. Springer-Verlag, Berlin

    Google Scholar 

  110. Steffen W, Broadgate W, Deutsch L et al (2015a) The trajectory of the anthropocene: the great acceleration. Anthropocene Rev 2(1):81–98

    Google Scholar 

  111. Steffen W, Richardson K, Rockström J et al (2015b) Planetary Boundaries: Guiding human development on a changing planet. Science 347(6223):1259855

    Google Scholar 

  112. Stephens L, Fuller D, Boivin NL et al (2019) Archaeological assessment reveals Earth’s early transformation through land use. Science 365(6456):897–902

    Google Scholar 

  113. Swim J, Clayton S, Doherty T, et al (2009) Psychology and global climate change: addressing a multi-faceted phenomenon and set of challenges, https://www.apa.org/releases/climate-change.pdf

  114. Tversky A, Kahneman D (1974) Judgment under uncertainty: Heuristics and biases. Science 185(4157):1124–1131

    Google Scholar 

  115. UNEP (2018) Emissions Gap Report 2018. United Nations Environment Programme

  116. UNFCCC-NAZCA (2019) Global Climate Action —Nzca (Non-Styate Action Zone for Climate Action). https://climateaction.unfccc.int/

  117. Waters CN, Syvitski JPM, Galuszka A et al (2015) Can nuclear weapons fallout mark the beginning of the anthropocene epoch? Bull Atom Sci 71:46–57

    Google Scholar 

  118. Waters CN, Zalasiewicz J, Summerhayes C et al (2018) A global boundary stratotype sections and points (gssps) for the anthropocene series: Where and how to look for a potential candidate. Earth Sci Rev 178:379–429

    Google Scholar 

  119. Weber E (2017) Breaking cognitive barriers to a sustainable future. Nat Hum Behav 1:0013

    Google Scholar 

  120. Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513

    Google Scholar 

  121. Wilson DS, Hayes SC, Biglan A, Embry DD (2014) Evolving the future: toward a science of intentional change. Behav Brain Sci 37:395–460

    Google Scholar 

  122. World Health Organization (2017) Vector-borne diseases, fact sheet. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases

  123. Xu C, Kohler TA, Lenton TM et al (2020) Future of the human climate niche. Proc Natl Acad Sci 117(21):11350–11355

    Google Scholar 

  124. Zalasiewicz J, Waters CN, Wolfe AP (2017) Making the case for a formal Anthropocene Epoch: an analysis of ongoing critiques. Newsl Stratigr 50:205–226

    Google Scholar 

  125. Zalasiewicz J, Waters CN, Head MJ et al (2019) A formal Anthropocene is compatible with but distinct from its diachronous anthropogenic counterparts: a response to W. F. Ruddiman’s “three-flaws in defining a formal Anthropocene”. Prog Phys Geogr 43(3):319–333

    Google Scholar 

  126. Zhao C, Liu B, Piao S et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci 114(35):9326–9331

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Francesco Suman (University of Padua) for helpful discussion in the early phases of this work and Dr. Adrian Currie (University of Exeter) for his thoughtful feedback on a later draft of this manuscript. We would also like to thank the editor and the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Author information

Affiliations

Authors

Contributions

Andra Meneganzin drafted Sects. 1, 2, 3; Telmo Pievani drafted Sects. 4, 5, 6 of the initial manuscript. Stefano Caserini critically and carefully reviewed the whole work and the scientific writing, integrating passages in each section and primary scientific literature on climate change.

Corresponding author

Correspondence to Andra Meneganzin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meneganzin, A., Pievani, T. & Caserini, S. Anthropogenic climate change as a monumental niche construction process: background and philosophical aspects. Biol Philos 35, 38 (2020). https://doi.org/10.1007/s10539-020-09754-2

Download citation

Keywords

  • Anthropocene
  • Climate change
  • Cognitive bias
  • Human evolution
  • Niche construction
  • Sixth mass extinction