Biology & Philosophy

, Volume 29, Issue 1, pp 123–141 | Cite as

Function in ecology: an organizational approach

  • Nei Nunes-Neto
  • Alvaro Moreno
  • Charbel N. El-Hani


Functional language is ubiquitous in ecology, mainly in the researches about biodiversity and ecosystem function. However, it has not been adequately investigated by ecologists or philosophers of ecology. In the contemporary philosophy of ecology we can recognize a kind of implicit consensus about this issue: while the etiological approaches cannot offer a good concept of function in ecology, Cummins’ systemic approach can. Here we propose to go beyond this implicit consensus, because we think these approaches are not adequate for ecology. We argue that a sound epistemological framework to function in ecology is to be found in organizational approaches. In this line, we define function in ecology as a precise effect of a given constraint on the ecosystem flow of matter and energy performed by a given item of biodiversity, within a closure of constraints. We elaborate on this definition by developing a case study of a bromeliad ecosystem.


Function Ecosystem Biodiversity BEF Constraints Organization 



Nei Nunes-Neto acknowledges to CAPES (Ministry of Education of Brazil) for a PDSE Grant (No. 6084/11-7) and to the Information and Autonomous System Research Group (University of Basque Country) for all the support to the realization of this work. Alvaro Moreno acknowledges the aid of the Research Project IT 505-10 of the Gobierno Vasco and FFU2009-12895-CO2-02 and FFI2011-25665 of the Spanish Ministerio de Economıa y Competitividad. Charbel N. El-Hani thanks the Brazilian National Council for Scientific and Technological Development (CNPq) for a productivity research Grant (No. 301259/2010-0) and both CNPq and the Research Support Foundation of the State of Bahia (FAPESB) for research funding (Project PNX0016_2009). We are indebted to Sergio Martinez and Maximiliano Martinez for thoughtful discussions of a previous version of the paper. Finally, we acknowledge an anonymous reviewer and Kim Sterelny for their valuable comments, which helped to significantly improve the paper.


  1. Ahl V, Allen TFH (1996) Hierarchy theory: a vision, vocabulary, and epistemology. Columbia University Press, New YorkGoogle Scholar
  2. Allen T, Hoekstra T (1992) Toward a unified ecology. Columbia University Press, New YorkGoogle Scholar
  3. Allen C, Bekoff M, Lauder G (eds) (1998) Nature’s purposes—analyses of function and design in biology. MIT Press, CambridgeGoogle Scholar
  4. Almeida AM, El-Hani CN (2006) A atribuição de função à biodiversidade segundo a visão do ‘papel causal’: uma análise epistemológica do discurso ecológico das últimas duas décadas. Filosofia e História da Biologia 1:21–39Google Scholar
  5. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  6. Ariew A, Cummins R, Perlman M (eds) (2002) Functions: new essays in philosophy of psychology and biology. Oxford University Press, OxfordGoogle Scholar
  7. Ayala FJ, Arp R (eds) (2010) Contemporary debates in philosophy of biology. Wiley-Blackwell, MaldenGoogle Scholar
  8. Bechtel W, Richardson RC (2010) Discovering complexity: decomposition and localization as strategies in scientific research. MIT Press, CambridgeGoogle Scholar
  9. Benzing DH (2000) Bromeliaceae: profile of an adaptative radiation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Brussaard L, Pulleman M, Ouédraogo É, Mando A, Six J (2007) Soil fauna and soil function in the fabric of the food web. Pedobiologia 50:447–462. doi: 10.1016/j.pedobi.2006.10.007 CrossRefGoogle Scholar
  11. Caponi G (2010) La ciencia de lo sustentable: razón de ser del discurso funcional en ecología. Principia 14(3):349–373Google Scholar
  12. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi: 10.1038/nature11148 CrossRefGoogle Scholar
  13. Centler F, Dittrich P (2007) Chemical organizations in atmospheric photochemistries—A new method to analyze chemical reaction networks. Planet Space Sci 55:413–428CrossRefGoogle Scholar
  14. Clements FE (2000[1916]) Plant succession: an analysis of the development of vegetation. In: Keller DR, Golley FB (eds) The philosophy of ecology: from science to synthesis. University of Georgia Press, Athens, pp 35–41Google Scholar
  15. Collier J (2006) Autonomy and process closure as the basis for functionality. Ann NY Acad Sci 901:280–291. doi: 10.1111/j.1749-6632.2000.tb06287.x CrossRefGoogle Scholar
  16. Craver CF (2001) Role functions, mechanisms, and hierarchy. Philos Sci 68:53–74CrossRefGoogle Scholar
  17. Cummins R (1998[1975]) Functional analysis. In: Allen C, Bekoff M, Lauder G (eds) Nature’s purposes—analyses of function and design in biology. MIT Press, Cambridge, pp 169–196Google Scholar
  18. Cummins R (2002) Neoteleology. In: Ariew A, Cummins R, Perlman M (eds) Functions: new essays in philosophy of psychology and biology. Oxford University Press, Oxford, pp 157–172Google Scholar
  19. De Groot R, Wilson M, Bouman R (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408CrossRefGoogle Scholar
  20. Diaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. doi: 10.1016;S0169-5347(01)02283-2 CrossRefGoogle Scholar
  21. El-Hani CN, Emmeche C (2000) On some theoretical grounds for an organism-centered biology: property emergence, supervenience, and downward causation. Theory Biosci 119:234–275CrossRefGoogle Scholar
  22. Emmeche C, Køppe S, Stjernfelt F (2000) Levels, emergence and three versions of downward causation. In: Andersen PB, Emmeche C, Finnemann NO, Christiansen PV (eds) Downward causation: minds, bodies and matter. Aarhus University Press, Aarhus, pp 13–34Google Scholar
  23. Godfrey-Smith P (1998[1994]) A modern history theory of functions. In: Allen C, Bekoff M, Lauder G (eds) Nature’s purposes—analyses of function and design in biology. MIT Press, Cambridge, pp 453–477Google Scholar
  24. Huneman P (2011) About the conceptual foundations of ecological engineering: stability, individuality and values. Procedia Environ Sci 9:72–82. doi: 10.1016/j.proenv.2011.11.013 CrossRefGoogle Scholar
  25. Jax K (2005) Function and “functioning” in ecology: what does it mean? Oikos 111(3):641–648CrossRefGoogle Scholar
  26. Kitcher P (1998[1993]) Function and design. In: Allen C, Bekoff M, Lauder G (eds) Nature’s purposes—analyses of function and design in biology. MIT Press, Cambridge, pp 479–503Google Scholar
  27. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  28. Lunine J, Hörst S (2011) Organic chemistry on the surface of Titan. Rend Fis Acc Lincei 22:183–189. doi: 10.1007/s12210-011-0130-8 CrossRefGoogle Scholar
  29. Mace G, Norris K, Fitter A (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27(1):19–26. doi: 10.1016/j.tree.2011.08.006 CrossRefGoogle Scholar
  30. Maclaurin J, Sterelny K (2008) What is biodiversity?. Chicago University Press, ChicagoCrossRefGoogle Scholar
  31. Mikkelson G (2004) Biological diversity, ecological stability, and downward causation. In: Oksanen M, Pietarinen J (eds) Philosophy and biodiversity: an introduction. Cambridge University Press, Cambridge, pp 119–229CrossRefGoogle Scholar
  32. Mossio M, Moreno A (2010) Organisational closure in biological organisms. Hist Phil Life Sci 32:269–288Google Scholar
  33. Mossio M, Saborido C, Moreno A (2009) An organizational account of biological functions. Brit J Philos Sci 60:813–841. doi: 10.1093/bjps/axp036 CrossRefGoogle Scholar
  34. Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem function and service? Curr Opin Environ Sustain 2:75–79. doi: 10.1016/j.cosust.2010.02.003 CrossRefGoogle Scholar
  35. Naeem S (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83(6):1537–1552Google Scholar
  36. Nunes-Neto NF, El-Hani CN (2006) Gaia, Teleologia e Função. Episteme 11:15–48Google Scholar
  37. Nunes-Neto NF, El-Hani CN (2011) Functional explanations in biology, ecology, and earth system science: contributions from philosophy of biology. Bost Stud Philos Sci 290:185–200. doi: 10.1007/978-90-481-9422-3_13 CrossRefGoogle Scholar
  38. Nunes-Neto NF, Carmo RS, El-Hani CN (2013) O conceito de função na ecologia contemporânea. Rev Filos Aurora 25(36):43–73. doi: 10.7213/revistadefilosofiaaurora.7765 CrossRefGoogle Scholar
  39. O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, PrincetonGoogle Scholar
  40. Pattee HH (1972) Laws and constraints, symbols and languages. In: Waddington CH (ed) Towards a theoretical biology 4, essays. Edinburgh University Press, Edinburgh, pp 248–258Google Scholar
  41. Petchey O, Gaston K (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. doi: 10.1111/j.1461-0248.2006.00924.x CrossRefGoogle Scholar
  42. Pickett STA, Kolasa J, Jones CG (2007) Ecological understanding: the nature of theory and the theory of nature. Academic Press, BurlingtonGoogle Scholar
  43. Romero G, Srivastava D (2010) Food-web composition affects cross-ecosystem interactions and subsidies. J Anim Ecol 79:1122–1131. doi: 10.1111/j.1365-2656.2010.01716.x CrossRefGoogle Scholar
  44. Saborido C, Mossio M, Moreno A (2011) Biological organization and cross-generation functions. Brit J Philos Sci 62:583–606. doi: 10.1093/bjps/axq034 CrossRefGoogle Scholar
  45. Schlosser G (1998) Self-re-production and functionality: a systems-theoretical approach to teleological explanation. Synthese 116:303–354CrossRefGoogle Scholar
  46. Simon H (1981) The sciences of the artificial. MIT Press, CambridgeGoogle Scholar
  47. Srivastava D, Kolasa J, Bengtsson J, Gonzalez A, Lawler S, Miller T, Munguia P, Romanuk T, Schneider D, Trzcinski M (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19(7):379–384. doi: 10.1016/j.tree.2004.04.010 Google Scholar
  48. Sterelny K (2006) Local ecological communities. Philos Sci 73:215–231CrossRefGoogle Scholar
  49. Tilman D, Lehman C (2002) Biodiversity, composition and ecosystem processes: theory and concepts. In: Kinzig AP, Pacala SW, Tilman D (eds) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton, pp 9–41Google Scholar
  50. Ulanowicz R (2000) Ascendancy: a measure of ecosystem performance. In: Jorgensen SE, Muller F (eds) Handbook of ecosystem theories and management. Lewis Publishers, Boca Raton, pp 303–315Google Scholar
  51. Van Gulick R (1993) Who is in charge here? And who’s doing all the work? In: Heil J, Mele A (eds) Mental causation. Oxford University Press, Oxford, pp 233–256Google Scholar
  52. Wilkinson DM (2006) Fundamental processes in ecology: an earth systems approach. Oxford University Press, OxfordCrossRefGoogle Scholar
  53. Wouters A (2005) The function debate in philosophy. Acta Biotheor 53:123–151CrossRefGoogle Scholar
  54. Wright L (1998[1973]) Functions. In: Allen C, Bekoff M, Lauder G (eds) Nature’s purposes—analyses of function and design in biology. MIT Press, Cambridge, pp 51–78Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nei Nunes-Neto
    • 1
  • Alvaro Moreno
    • 2
  • Charbel N. El-Hani
    • 1
  1. 1.History, Philosophy, and Biology Teaching Laboratory, Department of General Biology, Institute of BiologyFederal University of BahiaSalvadorBrazil
  2. 2.IAS-Research Centre for Life, Mind and Society, Department of Logic and Philosophy of ScienceUniversity of the Basque CountrySan SebastiánSpain

Personalised recommendations