Advertisement

Biologia Plantarum

, Volume 62, Issue 3, pp 489–500 | Cite as

Physiological adaptation and gene expression analysis of Casuarina equisetifolia under salt stress

  • C. Fan
  • Z. Qiu
  • B. Zeng
  • X. Li
  • S. H. Xu
Original paper
  • 116 Downloads

Abstract

Casuarina equisetifolia is widely planted in coastal areas of tropical and subtropical regions as windbreaks or to stabilize dunes against wind erosion due to its high salt tolerance and nitrogen-fixing ability. To investigate the mechanisms responsible for its salt tolerance, we examined growth, mineral composition, expression of genes for sodium (Na+) and potassium (K+) transport proteins, and antioxidant responses under NaCl treatments. Increasing NaCl concentrations inhibited lateral root elongation and decreased plant height, length of internodes, and numbers of branches and twigs. The Na+ content significantly increased whereas the K+ content significantly decreased in both shoots and roots with increasing external NaCl concentration, resulting in a significant increase in Na+/K+ ratio. Most of the Na+/H+ antiporter genes (NHXs) were obviously upregulated in roots after 24 and 168 h of salt stress, and NHX7 was especially induced after 168 h. Almost all salt overly sensitive (SOS) genes were induced after 168-h treatment. Additionally, activities of superoxide dismutase, glutathione peroxidase, and catalase were significantly changed in shoots and roots under salt stress. Hence, we conclude that salinity tolerance of C. equisetifolia mainly relied on sequestering excess Na+ into vacuoles and on induced expression of NHX and SOS genes in roots and thus the maintenance of sufficient K+ content in shoots.

Additional key words

antiporter genes catalase glutathione peroxidase ion homeostasis potassium salt overly sensitive sodium superoxide dismutase 

Abbreviations

Car

carotenoids

CAT

catalase

Chl

chlorophyll

d.m.

dry mass

EC

electrical conductivity

f.m.

fresh mass

GR

glutathione reductase

GSH-Px

glutathione peroxidase

MDA

malondialdehyde

NHX

Na+/H+ antiporters

POD

peroxidase

qPCR

quantitative PCR

SOD

superoxide dismutase

SOS

salt overly sensitive

WC

water content

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2018_799_MOESM1_ESM.pdf (577 kb)
Supplementary material, approximately 578 KB.

References

  1. Aghaleh, M., Niknam, V., Ebrahimzadeh, H., Razavi, K.: Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. - Biol. Plant. 53: 243–248, 2009.CrossRefGoogle Scholar
  2. Apel, K.,Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant Biol. 55: 373–399, 2004.CrossRefPubMedGoogle Scholar
  3. Bradley, P. M., Morris, J. T.: Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. - J. exp. Bot. 42: 1525–1532, 1991.CrossRefGoogle Scholar
  4. Caihong, P., Sujun, Z., Zhizhong, G.,Baoshan, W.: NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. - Physiol. Plant. 125: 490–499, 2005.CrossRefGoogle Scholar
  5. Chen, S., Heuer, B.: Effect of genotype and exogenous application of glycinebetaine on antioxidant enzyme activity in native gels of 7-day-old salt-stressed tomato (Solanum lycopersicum) seedlings. - Sci. Hort. 162: 106–116, 2013.CrossRefGoogle Scholar
  6. De Zoysa, M.: Casuarina coastal forest shelterbelts in Hambantota city, Sri Lanka: assessment of impacts. - Smallscale Forest. 7: 17–27, 2008.Google Scholar
  7. Fan, C., Qiu, Z., Zeng, B., Liu, Y., Li, X., Guo, G.: Selection of reference genes for quantitative real-time PCR in Casuarina equisetifolia under salt stress. - Biol. Plant. 61: 463–472, 2017.CrossRefGoogle Scholar
  8. Feki, K., Quintero, F J., Khoudi, H., Leidi, E. O., Masmoudi, K., Pardo, J. M., Brini, F.: A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. - Plant Cell Rep. 33: 277–288, 2013.CrossRefPubMedGoogle Scholar
  9. Gapińska, M., Skłodowska, M., Gabara, B.: Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. - Acta Physiol. Plant. 30: 11–18, 2008.CrossRefGoogle Scholar
  10. Ji, H., Pardo, J. M., Batelli, G., Van Oosten, M J., Bressan, R. A., Li, X.: The salt overly sensitive (SOS) pathway: established and emerging roles. - Mol. Plants 6: 275–286, 2013.CrossRefGoogle Scholar
  11. Krishnamurthy, P., Ranathunge, K., Nayak, S., Schreiber, L., Mathew, M K.: Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). - J. exp. Bot. 62: 4215–4228, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Li, H., Li, N., Yang, S., Peng, H., Wang, L., Wang, Y., Zhang, X., Gao, Z.: Transcriptomic analysis of Casuarina equisetifolia L. in responses to cold stress. - Tree Genet. Genomes 13: 7, 2016.CrossRefGoogle Scholar
  13. Livak, K. J., Schmittgen, T. D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. - Methods 25: 402–408, 2001.CrossRefPubMedGoogle Scholar
  14. Meloni, D.A., Oliva, M.A., Martinez, C.A., Cambraia, J.: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. - Environ. exp. Bot. 49: 69–76, 2003.CrossRefGoogle Scholar
  15. Mittal, S., Kumari, N.,Sharma, V.: Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. - Plant Physiol. Biochem. 54: 17–26, 2012.CrossRefPubMedGoogle Scholar
  16. Mittova, V., Tal, M., Volokita, M.,Guy, M.: Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. - Physiol. Plant. 115: 393–400, 2002.CrossRefPubMedGoogle Scholar
  17. Munns, R.,Tester, M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651–681, 2008.CrossRefPubMedGoogle Scholar
  18. Obertello, M., Wall, L., Laplaze, L., Nicole, M., Auguy, F., Gherbi, H., Bogusz, D.,Franche, C.: Functional analysis of the metallothionein gene cgMT1 isolated from the actinorhizal tree Casuarina glauca. - Mol. Plant-Microbe Interact. 20: 1231–1240, 2007.CrossRefPubMedGoogle Scholar
  19. Péret, B., Swarup, R., Jansen, L., Devos, G., Auguy, F., Collin, M., Santi, C., Hocher, V., Franche, C., Bogusz, D., Bennett, M.,Laplaze, L.: Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. - Plant Physiol. 144: 1852–1862, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Perveen, S., Shahbaz, M., Ashraf, M.: Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. - Pak. J. Bot. 43: 2463–2468, 2011.Google Scholar
  21. Ramezani, A., Niazi, A., Abolimoghadam, A.A., Zamani Babgohari, M., Deihimi, T., Ebrahimi, M., Akhtardanesh, H., Ebrahimie, E.: Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress. - Mol. Biotech. 53: 189–197, 2012.CrossRefGoogle Scholar
  22. Sabir, P., Ashraf, M., Hussain, M., Jamil, A.: Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum miliaceum L.) accessions. - Pak. J. Bot. 41: 2957–2964, 2009.Google Scholar
  23. Sekmen, A.H., Turkan, I., Tanyolac, Z.O., Ozfidan, C., Dinc, A.: Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. - Environ. exp. Bot. 77: 63–76, 2012.CrossRefGoogle Scholar
  24. Sudhakar, C., Lakshmi, A.,Giridarakumar, S.: Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. - Plant Sci. 161: 613–619, 2001.CrossRefGoogle Scholar
  25. Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I.,Dubinsky, Z.: Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. - Aquat. Bot. 68: 15–28, 2000.CrossRefGoogle Scholar
  26. Tani, C., Sasakawa, H.: Salt tolerance of Casuarina equisetifolia and FrankiaCeq1 strain isolated from the root nodules of C. equisetifolia. - Soil Sci. Plant Nutr. 49: 215–222, 2003.CrossRefGoogle Scholar
  27. Türkan, I., Demiral, T.: Recent developments in understanding salinity tolerance. - Environ. exp. Bot. 67: 2–9, 2009.CrossRefGoogle Scholar
  28. Wang, W., Kim, Y., Lee, H., Kim, K., Deng, X.,Kwak, S.: Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. - Plant Physiol. Biochem. 47: 570–577, 2009.CrossRefPubMedGoogle Scholar
  29. Widodo, Patterson, J.H., Newbigin, E., Tester, M., Bacic, A., Roessner, U.: Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. - J. exp. Bot. 60: 4089–4103, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wu, C., Zhang, Y., Tang, S., Zhong, C.: Effect of NaCl stress on Casuarina seed germination. - Seeds 4: 30–33, 2010.Google Scholar
  31. Yang, Q., Chen, Z., Zhou, X., Yin, H., Li, X., Xin, X., Hong, X., Zhu, J., Gong, Z.: Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. - Mol. Plants 2: 22–31, 2009.CrossRefGoogle Scholar
  32. Yıldıztugay, E., Sekmen, A.H., Turkan, I., Kucukoduk, M.: Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. - Plant Physiol. Biochem. 49: 816–824, 2011.CrossRefPubMedGoogle Scholar
  33. Yong, Z., Chonglu, Z., Qingbin, J., Yu, C., Zhen, C.: Study on salt-tolerance ability in rooted cuttings of different Casuarina clones. - Forest Res. 21: 91–95, 2008.Google Scholar
  34. Zhao, X., Wei, P., Liu, Z., Yu, B., Shi, H.: Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress. - Acta Physiol. Plant. 39:19, 2016.CrossRefGoogle Scholar
  35. Zhong, C., Zhang, Y., Chen, Y., Jiang, Q., Chen, Z., Liang, J., Pinyopusarerk, K., Franche, C., Bogusz, D.: Casuarina research and applications in China. - Symbiosis 50: 107–114, 2010.CrossRefGoogle Scholar
  36. Zhu, J.: Genetic analysis of plant salt tolerance using Arabidopsis. - Plant Physiol. 124: 941–948, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhu, J.: Regulation of ion homeostasis under salt stress. - Curr. Opin. Plant Biol. 6: 441–445, 2003.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Research Institute of Tropical ForestryChinese Academy of ForestryGuangzhouP.R. China

Personalised recommendations