Overexpression of glycine-rich RNA-binding protein in tomato renders fruits with higher protein content after cold storage

  • G.M. Ruggieri
  • A. Triassi
  • C.E. Alvarez
  • A. Gola
  • J. Wiggenhauser
  • C.O. Budde
  • M.V. Lara
  • M.F. Drincovich
  • G.L. Müller
Article

Abstract

Glycine-rich RNA-binding proteins (GR-RBPs) are involved in RNA processing and also some of them are output signals of the circadian clock. In tomato, one GR-RBP gene family (LeGRP1) is composed by three highly homologous genes (LeGRP1a-c); each one rendering three transcriptional products: the un-spliced pre-RNA (preLegrp1a-c), the mature mRNA (mLegrp1a-c) and the alternatively spliced mRNA (asLegrp1a-c). To get insight into their regulation and impact on RNA metabolism in fruits, Solanum lycopersicum cv. Micro-Tom was transformed with preLeGRP1a fused to the polygalacturonase promoter, which drives expression to fruits from the mature green stage. Our results demonstrated a complex positive regulation of LeGRPs, in which LeGRP1a overexpression led to the induction of the others LeGRP1 members. Even though the LeGRP1 transcription and the content of three LeGRPs proteins were affected, the overall LeGRP protein circadian rhythm profile was similar in transgenic and WT fruits. However, when the fruits are kept at chilling temperature after harvest, total protein content was significantly higher in transgenic than in WT fruits, and the content of some free amino acids was modified. The results obtained suggest a probable role of LeGRP1s: structural rearrangements and/or stabilization of mRNA to allow efficient processing of fruits under cold conditions.

Additional key words

amino acids circadian rhythm polygalacturonase promoter RNA stabilization 

Abbreviations

CI

chilling injury

CSD

cold shock domain

DAA

days after anthesis

GR-RBPs

glycine-rich RNA-binding proteins

IG

immature green

MG

mature green

PG

polygalacturonase

PITC

phenylisothiocyanate

RT-qPCR

reverse transcription - quantitative polymerase chain reaction

RBP

RNA binding protein

RR

red ripe

RRM

RNA recognition motif

TEA

triethylamine

WT

wild-type

Y

green yellowish.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2018_794_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1254 KB.

References

  1. Ambrosone, A., Batelli, G., Nurcato, R., Aurilia, V., Punzo, P., Bangarusamy, D. K., Ruberti, I., Sassi, M., Leone A., Costa, A., Grillo, S.: The Arabidopsis RNA-binding protein AtRGGA regulates tolerance to salt and drought stress. - Plant Physiol. 168: 292᾿06, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  2. An, G., Ebert, P.R., Mitra, A. Ha, S.B.: Binary Vectors in Plant Molecular Biology. - Kluwer Academic Publishers, Dordrect 1988.Google Scholar
  3. Ayarpadikannan, S., Chung, E.S., So, H.A., Kim, K.M., Schraufnagle, K.R., Lee, J.H.: Overexpression of SaRBP1 enhances tolerance of Arabidopsis to salt stress. - Plant Cell Tissue Organ Cult. 118: 327᾿38, 2014.CrossRefGoogle Scholar
  4. Borsani, J., Budde, C.O., Porrini, L., Lauxmann, M.A., Lombardo, V.A., Murray, R., Andreo, C.S., Drincovich, M.F., Lara, M.V.: Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. - J. exp. Bot 60: 1823᾿837, 2009.CrossRefPubMedGoogle Scholar
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal Biochem. 72: 248᾿54, 1976.CrossRefPubMedGoogle Scholar
  6. Burnette, W.N.: “Western blotting᾿ electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. - Anal Biochem. 112: 195᾿03, 1981.CrossRefPubMedGoogle Scholar
  7. Cook, K.B., Kazan, H., Suberi, K., Morris, Q., Hughes, T.R.: RBPDB: a database of RNA-binding specificities. - Nucl. Acids Res. 39: 301᾿08, 2011.CrossRefGoogle Scholar
  8. Dhar, P., Tayade, A.B., Kumar, J., Chaurasia, O.P., Srivastava, R.B., Singh, S.B.: Nutritional profile of phytococktail from trans-Himalayan plants. - PLoS One 8: e83008, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fahnenstich, H., Saigo, M., Niessen, M., Zanor, M.I., Andreo, C.S., Fernie, A., Drincovich, M.F., Flügge, U.I., Maurino, V.G.: Alteration of organic acid metabolism in Arabidopsis overexpressing the maize C4 NADP-malic enzyme causes accelerated senescence during extended darkness. - Plant Physiol. 145: 640᾿52, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fernandez, A.I., Viron, N., Alhagdow, M., Karimi, M., Jones, M., Amsellem, Z., Sicard, A., Czerednik, A., Angenent, G., Grierson, D., May, S., Seymour, G., Eshed, Y., Lemaire- Chamley, M., Rothan, C., Hilson, P.: Flexible tools for gene expression and silencing in tomato. - Plant Physiol. 151: 1729᾿740, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jackman, R.L., Yada, R.Y., Marangoni, A., Parkinz, K.L., Stanley, D.W.: Chilling injury. A review of quality aspects. - J. Food Qual. 11: 253᾿78, 1988.CrossRefGoogle Scholar
  12. Jung, H.J., Park, S.J., Kang, H.: Regulation of RNA metabolism in plant development and stress responses. - J. Plant Biol. 56: 123᾿29, 2013.CrossRefGoogle Scholar
  13. Kang, H., Park, S.J., Kwak, K.J.: Plant RNA chaperones in stress response. - Trends Plant Sci. 18: 100᾿06, 2013.CrossRefPubMedGoogle Scholar
  14. Khan, F., Daniëls, M.A., Folkers, G.E., Boelens, R., Saqlan Naqvi, S.M., Van Ingen, H.: Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function. - Nucl. Acids Res. 42: 8705᾿718, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kim, J.S., Jung, H.J., Lee, H.J., Kim, K.A., Goh, C.H., Woo, Y., Oh, S.H., Han, Y.S., Kang, H.: Glycine-rich RNAbinding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. - Plant J. 55: 455᾿66, 2008.CrossRefPubMedGoogle Scholar
  16. Kim, J.S., Park, S.J., Kwak, K.J., Kim, Y.O., Kim, J.Y., Song, J., Jang, B., Jung, C.-H., Kang, H.: Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in E. coli. - Nucl. Acids Res. 35, 506᾿16, 2007b.CrossRefPubMedGoogle Scholar
  17. Kim, J.Y., Kim, W.Y., Kwak, K.J., Oh, S.H., Han, Y.S., Kang, H.: Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. - J. exp. Bot. 61: 2317᾿325, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kim, J.Y., Park, S.J., Jang, B., Jung, C.-H., Ahn, S.J., Goh, C.-H., Cho, K., Han, O., Kang, H.: Functional characterrization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. - Plant J. 50: 439᾿51, 2007a.CrossRefPubMedGoogle Scholar
  19. Kim, M.K., Jung, H.J., Kim, D.H., Kang, H.: Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions. - Physiol. Plant 146: 297᾿07, 2012.CrossRefPubMedGoogle Scholar
  20. Kwak, K.J., Kim, H.-S., Jang, H.Y., Kang, H., Ahn, S.-J.: Diverse roles of glycine-rich RNA-binding protein 7 in the response of camelina (Camelina sativa) to abiotic stress. - Acta Physiol. Plant. 38: 129, 2016.CrossRefGoogle Scholar
  21. Kwak, K.J., Park, S.J., Han, J.H., Kim, M.K., Oh, S.H., Han, Y.S., Kang, H.: Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. - J. exp. Bot. 62: 4003᾿011, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - Nature 227: 680᾿85, 1970.CrossRefPubMedGoogle Scholar
  23. Lana, M.M., Tijskens, L.M.M., Van Kooten, O.: Effects of storage temperature and fruit ripening on firmness of fresh cut tomatoes. - Postharvest Biol. Technol. 35: 87᾿9, 2005.CrossRefGoogle Scholar
  24. Lau, J.M., Cooper, N.G., Robinson, D.L., Korban, S.S.: Sequence and in silico characterization of the tomato polygalacturonase (PG) promoter and terminator regions. - Plant mol. Biol. Rep. 27: 250᾿56, 2009.CrossRefGoogle Scholar
  25. López Camelo, A.F.: Storage. - In: Manual for thePreparation and Sale of Fruits and Vegetables from Field to Market. Pp. 47᾿4. FAO, Rome 2004.Google Scholar
  26. Lorković, Z.J.: Role of plant RNA-binding proteins in development. stress response and genome organization. - Trends Plant Sci. 14: 229᾿36, 2009.CrossRefPubMedGoogle Scholar
  27. Müller, G.L., Budde, C.O., Lauxmann, M.A., Triassi, A., Andreo, C.S., Drincovich, M.F., Lara, M.V.: Expression profile of transcripts encoding cell wall remodelling proteins in tomato fruit cv. Micro-Tom subjected to 15 °C storage. - Funct. Plant Biol. 40: 449᾿58, 2013.CrossRefGoogle Scholar
  28. Müller, G.L., Triassi, A., Alvarez, C., Falcone Ferreyra, M.L., Andreo, C.S., Lara, M.V., Drincovich, M.F.: Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits. - Funct. Plant Biol. 41: 411᾿23, 2014.CrossRefGoogle Scholar
  29. Nagata, M., Yamashita, I.: Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. - J. jap. Soc Food Sci 39: 925᾿28, 1992.Google Scholar
  30. Park, E.J., Jeknić, Z., Pino, M.T., Murata, N., Chen, T.H.: Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. - Plant Cell Environ. 8: 994᾿005, 2007.CrossRefGoogle Scholar
  31. Phadtare, S.: Unwinding activity of cold shock proteins and RNA metabolism. - RNA Biol. 8: 394᾿97, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pratelli, R. Pilot, G.: Regulation of amino acid metabolic enzymes and transporters in plants. - J. exp. Bot. 65: 5535᾿556, 2014.CrossRefPubMedGoogle Scholar
  33. Sachetto-Martins, G., Franco, L.O., De Oliveira, D.E.: Plant glycine-rich proteins: a family or just proteins with a common motif? - Biochim. biophys. Acta 1492: 1᾿4, 2000.CrossRefPubMedGoogle Scholar
  34. Sahi, C., Agarwal, M., Singh, A., Grover, A.: Molecular characterization of a novel isoform of rice (Oryza sativa L.) glycine rich-RNA binding protein and evidence for its involvement in high temperature stress response. - Plant Sci. 173: 144᾿55, 2007.CrossRefGoogle Scholar
  35. Sakamoto, A., Murata, N.: The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. - Plant Cell Environ. 25: 163᾿71, 2002.CrossRefPubMedGoogle Scholar
  36. Sasaki, K., Imai, R.: Pleiotropic roles of cold shock domain proteins in plants. - Front. Plant Sci. 2: 116, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schöning, J.C., Streitner, C., Meyer, I.M., Gao, Y., Staiger, D.: Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop. - Nucl. Acids Res. 36: 6977᾿987, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schöning, J.C., Streitner, C., Page, D.R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., Staiger, D.: Autoregulation of the circadian slave oscillator component AtGRP7 and regulation of its targetstargets is impaired by a single RNA recognition motif point mutation. - Plant J. 5: 1119᾿130, 2007.CrossRefGoogle Scholar
  39. Staiger, D., Zecca, L., Wieczorek Kirk, D.A., Apel, K., Eckstein, L.: The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. - Plant J. 33: 361᾿71, 2003.CrossRefPubMedGoogle Scholar
  40. Tan, Y., Qin, Y., Li, Y., Li, M., Ma, F.: Overexpression of MpGR-RBP1, a glycine-rich RNA-binding protein gene from Malus prunifolia (Willd.) Borkh, confers salt stress tolerance and protects against oxidative stress in Arabidopsis. - Plant Cell Tissue Organ Cult. 119: 635᾿46, 2014.CrossRefGoogle Scholar
  41. Zhang, B., Tieman, D.M., Jiao, C., Xu, Y., Chen, K., Fe, Z., Giovannoni, J.J., Klee, H.J.: Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. - Proc. nat. Acad. Sci. USA 113: 12580᾿2585, 2016.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • G.M. Ruggieri
    • 1
  • A. Triassi
    • 1
  • C.E. Alvarez
    • 1
  • A. Gola
    • 1
  • J. Wiggenhauser
    • 1
  • C.O. Budde
    • 2
  • M.V. Lara
    • 1
  • M.F. Drincovich
    • 1
  • G.L. Müller
    • 1
  1. 1.Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
  2. 2.Estación Experimental San PedroInstituto Nacional de Tecnología AgropecuariaSan PedroArgentina

Personalised recommendations