Nitrogen metabolism-related enzymes in Mesembryanthemum crystallinum after Botrytis cinerea infection

Article
  • 17 Downloads

Abstract

We compared C3 and CAM (crassulacean acid metabolism) states in Mesembryanthemum crystallinum, a facultative CAM species, with respect to the involvement of phosphoenolpyruvate carboxylase (PEPC) and nitrogen metabolismrelated enzymes in plant response to Botrytis cinerea infection. The enzyme activities were monitored both in pathogeninoculated 2nd leaf pair and non-inoculated 3rd leaf pair. The control activities of most studied enzymes were dependent on the mode of photosynthesis. Compared to C3 plants, those performing CAM exhibited higher PEPC, nitrate reductase (NR) and deaminating glutamate dehydrogenase (NAD-GDH) activities but lower glutamine synthetase (GS) and alanine aminotransferase (ALT) activities. Regardless of the mode of photosynthetic carbon assimilation, the plants responded to infection with enhancement of PEPC and inhibition of NR activities in the inoculated leaves. Whereas the activity of GS remained unaffected, those of all glutamate-yielding enzymes, namely ferredoxin-dependent glutamate synthase (Fd-GOGAT), aspartate aminotransferase (AST), ALT, and aminating glutamate dehydrogenase (NADHGDH) were altered after infection. However, the time-course and extent of the observed changes differed in C3 and CAM plants. In general, CAM plants responded to infection with earlier increase in PEPC and Fd-GOGAT activities as well as later inhibition of NR activity. Contrary to C3 plants, in those performing CAM the activities of PEPC, Fd-GOGAT, NADH-GDH, and AST in the non-inoculated 3rd leaf pair were similarly influenced by infection as in leaves directly inoculated with the pathogen. This implies that the local infection induced alteration of carbon/nitrogen status in healthy upper leaves. This reprogramming resulting from changes in PEPC and nitrogen metabolism-related enzymes was C3- and CAM-specific.

Keywords

crassulacean acid metabolism glutamate dehydrogenase grey mould ice plant nitrate reductase phosphoenolpyruvate carboxylase 

Abbreviation

ALT

alanine aminotransferase

AST

aspartate aminotransferase

CAM

crassulacean acid metabolism

dai

day after inoculation

EDTA

ethylenediaminetetraacetic acid

Fd-GOGAT

ferredoxin-dependent glutamate synthase

GS

glutamine synthetase

NAD-GDH

NAD-dependent glutamate dehydrogenase

NADH-GDH

NADH-dependent glutamate dehydrogenase

NADH-GOGAT

NADH-dependent glutamate synthase

NiR

nitrite reductase

NR

nitrate reductase

PEPC

phosphoenolpyruvate carboxylase

TCA cycle

tricarboxylic acid cycle

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubry, S., Brown, N.J., Hibberd, J.M.: The role of proteins in C(3) plants prior to their recruitment into the C(4) pathway. — J. exp. Bot. 62: 3049–3059, 2011.CrossRefPubMedGoogle Scholar
  2. Bilgin, D.D., Zavala, J., Zhu, J., Clough, S.J., Or, D.R., DeLucia, E.H.: Biotic stress globally downregulates photosynthesis genes. — Plant Cell Environ. 33: 1597–1613, 2010.CrossRefPubMedGoogle Scholar
  3. Bolton, M.D., Thomma, B.P.H.J.: The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi. — Physiol. mol. Plant Pathol. 72: 104–110, 2008.CrossRefGoogle Scholar
  4. Botrel, A., Kaiser, W.M.: Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. — Planta 201: 496–501, 1997.CrossRefPubMedGoogle Scholar
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  6. Cebeci, O., Kokturk, B., Ergen, N., Ozturk, L., Cakmak, I., Budak, H.: Differential expression of wheat transcriptomes in response to varying cadmium concentrations. — Biol. Plant. 52: 703–708, 2008.CrossRefGoogle Scholar
  7. Champigny, M.L.: Integration of photosynthetic carbon and nitrogen metabolism in higher plants. — Photosynth. Res. 46: 117–127, 1995.CrossRefPubMedGoogle Scholar
  8. Chang, Y.-M., Liu, W.-Y., Shih, A.C.-C., Shen, M.-N., Lu, C.- H., Lu, M.-Y.J., Yang, H.-W., Wang, T.-Y., Chen, S.C.-C., Chen, S.M., Li, W.-H., Ku, M.S.B.: Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. — Plant Physiol. 160: 165–177, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Coruzzi, G.M., Zhou, L.: Carbon and nitrogen sensing and signaling in plants: emerging “matrix effects”. — Curr. Opin. Plant Biol. 4: 247–253, 2001.CrossRefPubMedGoogle Scholar
  10. Delgado-Alvarado, A., Walker, R.P., Leegood, R.C.: Phosphoenolpyruvate carboxykinase in developing pea seeds is associated with tissues involved in solute transport and is nitrogen-responsive. — Plant Cell Environ. 30: 225–235, 2007.CrossRefPubMedGoogle Scholar
  11. Doubnerová, V., Ryšlavá, H.: What can enzymes of C4 photosynthesis do for C3 plants under stress? — Plant Sci. 180: 575–583, 2011.CrossRefPubMedGoogle Scholar
  12. Foyer, C.H., Noctor, G.: Photosynthetic nitrogen assimilation: inter-pathway control and signaling. - In: Foyer, C.H., Noctor, G., (ed.): Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, Advances in Photosynthesis and Respiration. Pp. 1–22. Kluwer Academic Publishers, Dordrecht 2002.Google Scholar
  13. Gabara, B., Kuźniak, E., Skłodowska, M., Surówka, E., Miszalski, Z.: Ultrastructural and metabolic modifications at the plant-pathogen interface in Mesembryanthemum crystallinum leaves infected by Botrytis cinerea. — Environ. exp. Bot. 77: 33–43, 2012.CrossRefGoogle Scholar
  14. Gajewska, E., Niewiadomska, E., Tokarz, K., Słaba, M., Skłodowska, M.: Nickel-induced changes in carbon metabolism in wheat shoots. — J. Plant Physiol. 170: 369–377, 2013.CrossRefPubMedGoogle Scholar
  15. Gajewska, E., Skłodowska, M.: Nickel-induced changes in nitrogen metabolism in wheat shoots. — J. Plant Physiol. 166: 1034–1044, 2009.CrossRefPubMedGoogle Scholar
  16. Gao, S., Liu, K.-T., Chung, T.-W., Chen, F.: The effects of NaCl stress on Jatropha cotyledon growth and nitrogen metabolism. — J. Soil Sci. Plant Nutr. 13: 99–113, 2013.Google Scholar
  17. Gawronska, K., Niewiadomska, E.: Participation of citric acid and isocitric acid in the diurnal cycle of carboxylation and decarboxylation in the common ice plant. - Acta Physiol. Plant. 37: final reference? 2015.Google Scholar
  18. Kuźniak, E., Gabara, B., Skłodowska, M., Libik-Konieczny, M., Miszalski, Z.: Effects of NaCl on the response of the halophyte Mesembryanthemum crystallinum callus to Botrytis cinerea infection. — Biol. Plant. 55: 423–430, 2011.CrossRefGoogle Scholar
  19. Kuźniak, E., Kaźmierczak, A., Wielanek, M., Głowacki, R., Kornas, A.: Involvement of salicylic acid, glutathione and protein S-thiolation in plant cell death-mediated defence response of Mesembryanthemum crystallinum against Botrytis cinerea. — Plant Physiol. Biochem. 63: 30–38, 2013.CrossRefPubMedGoogle Scholar
  20. Kuźniak, E., Kornas, A., Gabara, B., Ullrich, C., Skłodowska, M., Miszalski, Z.: Interaction of Botrytis cinerea with the intermediate C3-CAM plant Mesembryanthemum crystallinum. — Environ. exp. Bot. 69: 137–147, 2010.CrossRefGoogle Scholar
  21. Kuźniak, E., Kornas, A., Kaźmierczak, A., Rozpądek, P., Nosek, M., Kocurek, M., Zellnig, G., Müller, M., Miszalski, Z.: Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of C3-CAM intermediate plant Mesembryanthemum crystallinum. — Ann. Bot. 117: 1141–1151, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lea, P.J., Miflin, B.J.: Glutamate synthase and the synthesis of glutamate in plants. — Plant Physiol. Biochem. 41: 555–564, 2003.CrossRefGoogle Scholar
  23. Leegood, R.C., Walker, R.P.: Regulation and roles of phosphoenolpyruvate carboxykinase in plants. — Arch. Biochem. Biophys. 414: 204–210, 2003.CrossRefPubMedGoogle Scholar
  24. Libik-Konieczny, M., Surówka, E., Kuźniak, E., Nosek, M., Miszalski, Z.: Photosynthetic metabolism influences the direction of changes in antioxidant system activity in Mesembryanthemum crystallinum leaves inoculated with Botrytis cinerea or Pseudomonas syringae. — J. Plant Physiol. 168: 1052–1059, 2011.CrossRefPubMedGoogle Scholar
  25. Liu, G., Ji, Y., Bhuiyan, N.H., Pilot, G., Selvaraj, G., Zou, J., Wei, Y.: Amino acid homeostasis modulates salicylic acidassociated redox status and defense responses in Arabidopsis. — Plant Cell 22: 3845–3863, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., Suzuki, A.: Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. — Ann. Bot. 105: 1141–1157, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Miyashita, Y., Good, A.G.: NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. — J. exp. Bot. 59: 667–680, 2008.CrossRefPubMedGoogle Scholar
  28. Müller, C., Scheible, W., Stitt, M., Krapp, A.: Influence of malate and 2-oxoglutarate on the NIA transcript level and nitrate reductase activity in tobacco leaves. — Plant Cell Environ. 24: 191–203, 2001.CrossRefGoogle Scholar
  29. Nunes-Nesi, A., Fernie, A.R., Stitt, M.: Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. — Mol. Plant 3: 973–996, 2010.CrossRefPubMedGoogle Scholar
  30. Rojas, C.M., Senthil-Kumar, M., Tzin, V., Mysore, K.S.: Regulation of primary plant metabolism during plantpathogen interactions and its contribution to plant defense. - Front. Plant Sci. 5: 17. doi:10.3389/fpls.2014.00017, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ryšlavá, H., Müller, K., Semorádová, Š., Synková, H., Čeřovská, N.: Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by Potato virus A and Potato virus Y. — Photosynthetica 41: 357–363, 2003.CrossRefGoogle Scholar
  32. Sánchez, R., Flores, A., Cejudo, F.J.: Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. — Planta 223: 901–909, 2006.CrossRefPubMedGoogle Scholar
  33. Scharte, J., Schön, H., Weis, E.: Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. — Plant Cell Environ. 28: 1421–1435, 2005.CrossRefGoogle Scholar
  34. Schultz, J.C., Appel, H.M., Ferrieri, A.P., Arnold, T.M.: Flexible resource allocation during plant defense responses. Front. Plant Sci. 4: 324, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Seifi, H.S., Van Bockhaven, J., Angenon, G., Höfte, M.: Glutamate metabolism in plant disease and defense: friend or foe? — Mol. Plant Microbe Interact. 26: 475–485, 2013.CrossRefPubMedGoogle Scholar
  36. Skopelitis, D.S., Paranychianakis, N.V., Paschalidis, K.A., Pliakonis, E.D., Delis, I.D., Yakoumakis, D.I., Kouvarakis, A., Papadakis, A.K., Stephanou, E.G., Roubelakis- Angelakis, K.A.: Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. — Plant Cell 18: 2767–2781, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Snoeijers, S.S., Pérez-García, A., Joosten, M.H.A.J., De Wit, P.J.G.M.: The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. — Eur. J. Plant Pathol. 106: 493–506, 2000.CrossRefGoogle Scholar
  38. Song, J.T., Lu, H., McDowell, J.M., Greenberg, J.T.: A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. — Plant J. 40: 200–212, 2004.CrossRefPubMedGoogle Scholar
  39. Stewart, G.R., Rhodes, D.: Nitrogen metabolism of halophytes. — New Phytol. 80: 307–316, 1978.CrossRefGoogle Scholar
  40. Sun, W., Huang, A., Sang, Y., Fu, Y., Yang, Z.: Carbonnitrogen interaction modulates plant growth and expression of metabolic genes in rice. — J. Plant Growth Regul. 32: 575–584, 2013.CrossRefGoogle Scholar
  41. Vlot, A.C., Klessig, D.F., Park, S.-W.: Systemic acquired resistance: the elusive signal(s). — Curr. Opin. Plant Biol. 11: 436–442, 2008.CrossRefPubMedGoogle Scholar
  42. Zeier, J.: New insights into the regulation of plant immunity by amino acid metabolic pathways. — Plant Cell Environ. 36: 2085–2103, 2013.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • E. Gajewska
    • 1
  • E. Surówka
    • 2
  • A. Kornas
    • 3
  • E. Kuźniak
    • 1
  1. 1.Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
  2. 2.Institute of Plant PhysiologyPolish Academy of SciencesKrakówPoland
  3. 3.Institute of BiologyPedagogical UniversityKrakówPoland

Personalised recommendations