Biologia Plantarum

, Volume 60, Issue 4, pp 715–723 | Cite as

Cloning, characterization, and subcellular localization of a novel JAZ repressor from Eleusine coracana

Original Paper


Jasmonate ZIM domain (JAZ) proteins are key regulators of the jasmonic acid (JA) signaling pathway. Repressors of JAZ remain bound to the myelocytomatosis 2 (MYC2) or MYC3/MYC4 transcription factors in the absence of JA and negatively regulate transcription of the JA responsive genes. In the presence of JA, JAZ proteins interact with coronative insensitive 1 (COI1), the recognition molecule of E3 ubiquitin ligase SCFCOI1 (COI1 stabilized by Skp, cullin, F-box containing complex), get ubiquitinated, and subsequently degraded by the 26S proteasome. However, there is a dearth of knowledge about this gene family in monocot cereals, specifically its role in finger millet is unknown till date. Here we present the isolation and characterization of a novel JAZ family repressor gene from nonsequenced Eleusine coracana (EcJAZ) utilizing available genome information of Oryza, Sorghum, and Setaria. The EcJAZ sequence showed the presence of a conserved ZIM domain, the Jas motif, and N-terminal motif 7 like other Group1 TIFY sequence containing proteins. We observed coronatine (an analog of JA-Ile) dependent and time dependent degradation of recombinant EcJAZ that thereby fulfilled the basic characteristic of the JAZ proteins. We found a proteasome inhibitor N-(phenylmethoxy) carbonyl-L-leucyl-N-[(1R)-1-formyl-3-methylbutyl]-L-leucinamide) (MG132) mediated degradation inhibition of EcJAZ that supported its 26S proteasome mediated degradation. Our study shows the nuclear localization of GFP-EcJAZ by Agrobacterium mediated transient transformation of onion scale epidermal cells. In Eleusine leaves, transcription of EcJAZ increased 4.2-fold by salt stress and 5.5-fold by coronatine application; thus ascertained its inducibility by the abiotic stress as well as by bioactive JA-Ile. Taken together, all these results contribute to our understanding of the JA signaling pathway in Eleusine coracana.

Additional key words

Agrobacterium transformation coronatine finger millet jasmonic acid salt stress 



abscisic acid


coronatine insensitive 1


green fluorescence protein




jasmonic acid


jasmonate ZIM domain


methyl jasmonate


N-(phenylmethoxy) carbonyl-L-Leucyl-N-[(1R)-1-formyl-3-methylbutyl]-L-leucinamide




restriction endonuclease


COI1 stabilized by Skp, Cullin, F-box containing complex


conserved TIFY sequence containing protein


zinc finger protein expressed in inflorescence meristem


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2016_652_MOESM1_ESM.pdf (2.3 mb)
Supplementary material, approximately 2393 KB.


  1. Bai, Y., Meng, Y., Huang, D., Qi, Y., Chen, M.: Origin and evolutionary analysis of the plant specific TIFY transcription factor family. — Genomics 98: 128–136, 2011.CrossRefPubMedGoogle Scholar
  2. Barbeau, W.E., Hilu, K.W.: Protein, calcium, iron, and amino acid content of selected wild and domesticated cultivars of finger millet. — Plant Foods Human Nutr. 43: 97–104, 1993.CrossRefGoogle Scholar
  3. Bender, C.L., Alarcon-Chaidez, F., Gross, D.C.: Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. — Microbiol. mol. Biol. Rev. 63: 266–292, 1999.PubMedPubMedCentralGoogle Scholar
  4. Browse, J.: Jasmonate passes muster: a receptor and targets for the defense hormone. — Annu. Rev. Plant Biol. 60: 183–205, 2009.CrossRefPubMedGoogle Scholar
  5. Cheng, Z., Sun, L., Qi, T., Zhang, B., Peng, W., Liu, Y., Xie, D.: The bHLH transcription factor MYC3 interacts with the jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. — Mol. Plants 4: 279–288, 2011.CrossRefGoogle Scholar
  6. Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J.M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J.L., Solano, R.: The JAZ family of repressors is the missing link in jasmonate signalling. — Nature 448: 666–671, 2007.CrossRefPubMedGoogle Scholar
  7. Chung, H.S., Koo A. J. K., Gao, X., Jayanti, S., Thines, B., Jones, A.D., Howe, G.A.: Regulation and function of Arabidopsis JASMONATE ZIM domain genes in response to wounding and herbivory. — Plant Physiol. 146: 952–964, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chung, H.S., Niu, Y.J., Browse, J., Howe, G.A.: Top hits in contemporary JAZ: an update on jasmonate signaling. — Phytochemistry 70: 1547–1559, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Conconi, A., Smerdon, M.J., Howe, G.A., Ryan, C.A.: The octadecanoid signaling pathway in plants mediates a resoponse to ultraviolet radiation. — Nature 383: 826–829, 1996.CrossRefPubMedGoogle Scholar
  10. Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E.: WebLogo: a sequence logo generator. — Genome Res. 14: 1188–1190, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Castro, E., Sigrist, C.J.A., Gattiker, A., Bulliard, V., Petra, S., Langendijk-Genevaux, P.S., Gasteiger, E., Bairoch, A., Hulo, N.: ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. - Nucl. Acids Res. 34: W362–W365, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Devi, P.B., Vijayabharathi, R., Sathyabama, S., Malleshi, N.G., Priyadarshini, V.B.: Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. — J. Food Sci. Technol. 51: 1021–1040, 2014.CrossRefPubMedGoogle Scholar
  13. Farmer, E. E., Johnson, R. R., Ryan, C. A.: Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. — Plant Physiol. 98: 995–1002, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fernández-Calvo, P., Chini, A., Fernández-Barbero, G., Chico, J.M., Gimenez-Ibanez, S., Geerinck, J., Eeckhout, D., Schweizer, F., Godoy, M., Franco-Zorrilla, J.M., Pauwels, L., Witters, E., Puga, M.I., Paz-Ares, J., Goossens, A., Reymond, P., De Jaeger, G., Solano, R.: The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. — Plant Cell. 23: 701–715, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Feys, B.J.F., Benedetti, C.E., Penfold, C.N., Turner J.G.: Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. — Plant Cell 6: 751–759, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fonseca, S., Chini, A., Hamberg, M., Adie, B., Porzel, A., Kramell, R., Miersch, O., Wasternack, C., Solano, R.: (+)-7-Iso-jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. - Nat. Chem. Biol. 5: 344–350, 2009.CrossRefPubMedGoogle Scholar
  17. Gao, X., Brodhagen, M., Isakeit, T., Brown, S.H., Gobel, C., Betran, J., Feussner, I., Keller, N.P., Kolomiets, M.V.: Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. — Mol. Plant Microbe Interact. 22: 222–231, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gish, W., States, D.J.: Identification of protein coding regions by database similarity search. — Nat. Genet. 3: 266–272, 1993.CrossRefPubMedGoogle Scholar
  19. Gynheung, A.: Binary Ti vectors for plant transformation and promoter analysis. — Methods Enzymol. 153: 292–305, 1987.CrossRefGoogle Scholar
  20. Howe, G. A., Lightner, J., Browse, J., Ryan, C. A.: An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. — Plant Cell 8: 2067–2077, 1996.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kang, D.J., Seo, Y.J., Lee, J.D., Ishii, R., Kim, U., Shin, D.H., Park, S.K., Jang, S.W., Lee, I.J.: Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt tolerant and salt sensitive rice cultivars. — J. Agr. Crop Sci. 191: 273–282, 2005.CrossRefGoogle Scholar
  22. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y., Howe, G.A.: COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. — Proc. nat. Acad. Sci. USA 105: 7100–7105, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kazan, K., Manners, J.M.: JAZ repressors and the orchestration of phytohormone crosstalk. — Cell 17: 22–31, 2012.Google Scholar
  24. Kepinsky, S.: The anatomy of auxin perception. — BioEssays 29: 953–956, 2007.CrossRefGoogle Scholar
  25. Lee, H.Y., Seo, J.S., Cho, J.H, Jung, H., Kim, J.K., Lee, J.S., Rhee, S., Choi, Y.D.: Oryza sativa COI1 homologues restore jasmonate signal transduction in Arabidopsis COI1-1 mutants. — PLoS ONE 8: e52802, 2013.CrossRefGoogle Scholar
  26. Letunic, I., Bork, P.: Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. - Nucl. Acids Res. 39: W475–W478, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mewes, H.M., Frishman, D., Güldener, U., Mannhaupt, G., Mayer, K., Mokrejs, M., Morgenstern, B., Münsterkötter, M., Rudd, S., Weil, B.: MIPS: a database for genomes and protein sequences. — Nucl. Acids Res. 30: 31–34, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., et al.: The Sorghum bicolor genome and the diversification of grasses. — Nature 457: 551–556, 2009.CrossRefPubMedGoogle Scholar
  29. Pauwels, L., Morrel, K., De Witte, E., Lammertyn, F., Van Montagu, M., Boerjan, W., Inze, D., Gossens, A.: Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. — Proc. nat. Acad. Sci. USA 105: 1380–1385, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Pérez, A.C., Chico, J.M., Bossche, R.V., Sewell, J., Gil, E., García-Casado, G., Witters, E., Inzé, D., Long, J.A., Jaeger, G.D., Solano, R., Goossens, A.: NINJA connects the co-repressor TOPLESS to jasmonate signalling. — Nature 464: 788–792, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pedrazani, H., Racagni, G., Alemano, S., Miersch, O., Ramirez, I., Pena-Cortes, H., Taleisnik, E., Machado-Domenech, E., Abdala, G.: Salt tolerant tomato plants show increased levels of jasmonic acid. — Plant Growth Regul. 41: 149–158, 2003.CrossRefGoogle Scholar
  32. Perez, A.G., Sanz, C., Olias, R., Olias, J.M.: Effect of methyl jasmonate on in vitro strawberry ripening. — J. Agr. Food Chem. 45: 3733–737, 1997.CrossRefGoogle Scholar
  33. Qi, J., Zhou, G., Yang, L., Erb, M., Lu, Y., Sun, X., Cheng, J., Lou, Y.: The chloroplast-localized phospholipases D a4 and a5 regulate herbivore-induced direct and indirect defenses in rice. — Plant Physiol. 157: 1987–1999, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rattei, T., Tischler, P., Götz, S., Jehl, M.A., Hoser, J., Arnold, R., Conesa, A., Mewes, H.W.: SIMAP - a comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters. - Nucl. Acids Res. 38 (Database Issue): D223–D226, 2010.CrossRefPubMedGoogle Scholar
  35. Reymond, P., Weber, H., Damond, M., Farmer, E.E.: Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. — Plant Cell Online 12: 707–720, 2000.CrossRefGoogle Scholar
  36. Seo, J.S., Joo, J., Kim, M.J., Kim, Y.K., Nahm, B.H., Song, S.I., Cheong, J.J., Lee, J.S., Kim, J.K., Choi, Y.D.: OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. — Plant J. 65: 907–921, 2011.CrossRefPubMedGoogle Scholar
  37. Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.F., Sharon, M., Browse, J., He, S.Y., Rizo, J., Howe, G., Zheng, N.: Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ coreceptor. — Nature 468: 400–405, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Staswick, P. E., Su, W., Howell, S. H.: Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. — Proc. nat. Acad. Sci. USA 89: 6837–6840, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Staswick, P.E., Tiryaki, I.: The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. — Plant Cell 16: 2117–2127, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stintzi, A., Browse, J.: The Arabidopsis male-sterile mutant, OPR3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. — Proc. nat. Acad. Sci. USA 97: 10625–10630, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S.: MAGA6: molecular evolutionary genetics analysis version 6.0. — Mol. Biol. Evolut. 30: 2725–2729, 2013.CrossRefGoogle Scholar
  42. Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., Browse, J.: JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. — Nature 448: 661–665, 2007.CrossRefPubMedGoogle Scholar
  43. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. — Nucl. Acids Res. 22: 4673–4680, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vadivoo, A.S., Joseph, R., Garesan, N.M.: Genetic variability and calcium contents in finger millet (Eleusine coracana L. Gaertn) in relation to grain colour. — Plant Foods Human Nutr. 52: 353–364, 1998.CrossRefGoogle Scholar
  45. Vanholme, B., Grunewald, W., Bateman, A., Kohchi, T., Gheysen, G.: The TIFY family previously known as ZIM. — Trends Plant Sci. 12: 239–244, 2007.CrossRefPubMedGoogle Scholar
  46. Withers, J., Yao, J., Mecey, C., Howe, G.A., Melotto, M., He, S.Y.: Transcriptionfactor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling. — Proc. nat. Acad. Sci. USA 109: 20148–20153, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xiao, S., Dai, L., Liu, F., Wang, Z., Peng, W., Xie, D.: COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence. — Plant Cell Online 16: 1132–1142, 2004.CrossRefGoogle Scholar
  48. Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M., Turner, J.G.: COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. — Science 280: 1091–1094, 1998.CrossRefPubMedGoogle Scholar
  49. Xu, K., Huang, X., Wu, M., Wang, Y., Chang, Y., Liu, K., Zhang, J., Zhang, Y., Zhang, F., Yi, L., Li, T., Wang, R., Tan, G., Li, C.: A rapid, highly efficient and economical method Agrobacterium-mediated In planta transient transformation in living onion epidermis. — PLoS ONE 9: e83556, 2014.CrossRefGoogle Scholar
  50. Yan, Y., Christensen, S., Isakeit, T., Engelberth, J., Meeley, R., Hayward, A., Emery, R.J., Kolomiets, MV.: Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. — Plant Cell 24: 1420–1436, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., Xie, M., Zeng, P., P., Yue, Z., Wang, W., Tao, Y., Bian, C., Han, C., Xia, Q., Peng, X., Cao, R., Yang, X., Zhan, D., Hu, J., Zhang, Y., Li, H., Li, H., Li, N., Wang, J., Wang, C., Wang, R., Guo, T., Cai, Y., Liu, C., Xiang, H., Shi, Q., Huang, P., Chen, Q., Li, Y., Wang, J., Zhao, Z., Wang, J.: Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. — Nat. Biotech. 30: 549–554, 2012.CrossRefGoogle Scholar
  52. Zhu, J.: Salt and drought stress signal transduction in plants. — Annu. Rev. Plant Biol. 53: 247–273, 2002.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Drug Development/Diagnostics and Biotechnology DivisionCSIR - Indian Institute of Chemical BiologyKolkataIndia

Personalised recommendations