Biologia Plantarum

, Volume 60, Issue 4, pp 724–730 | Cite as

Cytochrome P450, CYP93A1, as defense marker in soybean

  • A. J. Kinzler
  • Z. A. Prokopiak
  • M. M. Vaughan
  • P. W. Erhardt
  • J. G. Sarver
  • J. A. Trendel
  • Z. Zhang
  • N. J. Dafoe
Original Paper


Cytochrome P450, CYP93A1, is involved in the synthesis of the phytoalexin glyceollin in soybean (Glycine max L. Merr). The gene encoding CYP93A1 has been used as defense marker in soybean cell cultures, however, little is known regarding how this gene is expressed in the intact plant. To further understand the tissue-specific role of CYP93A1 in soybean defense, we analyzed the expression of this gene in mechanically damaged leaves and stems. In leaves, CYP93A1 was constitutively expressed; its expression did not change in response to mechanical damage. In stems, however, expression of CYP93A1 was induced as quickly as 4 h after mechanical damage and remained upregulated for at least 48 h. The induction of CYP93A1 was associated with the synthesis of glyceollins. In comparison to several other defense-related genes encoding cysteine protease inhibitors L1 and R1 and storage proteins vspA and vspB, CYP93A1 was the most strongly induced by stem wounding. The induction of CYP93A1 was observed only locally, not systemically. Similar stem expression patterns were consistently observed among three different soybean genotypes. The strong induction of CYP93A1 in mechanically damaged stems suggests an important role in the soybean stem defense response; therefore, this study expands the use of CYP93A1 as a defense response marker to stems, not just soybean cell cultures.

Additional key words

cysteine protease inhibitors glyceollin jasmonic acid mechanical damage storage proteins 



cysteine proteinase inhibitor


cytochrome P450


translational elongation factor 1 subunit beta


jasmonic acid


quantitative PCR


unknown 1


vegetative storage protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2016_629_MOESM1_ESM.pdf (197 kb)
Supplementary material, approximately 197 KB.


  1. Aisyah, S., Gruppen, H., Madzora, B., Vincken, J.P.: Modulation of isoflavonoid composition of Rhizopus oryzae elicited soybean (Glycine max) seedlings by light and wounding. — J. Agr. Food Chem. 61: 8657–8667, 2013.CrossRefGoogle Scholar
  2. Anand, S.C., Gallo, K.M.: Identification of additional soybean germ plasm with resistance to race 3 of the soybean cyst nematode. — Plant Dis. 68: 593–594, 1984.CrossRefGoogle Scholar
  3. Bhattacharyya, M.K., Ward, E.W.B.: Phenylalanine ammonialyase activity in soybean hypocotyls and leaves following infection with Phytophthora megasperma f.sp. glycinea. — Can. J. Bot. 66: 18–23, 1988.CrossRefGoogle Scholar
  4. Botella, M.A., Xu, Y., Prabha, T.N., Zhao, Y., Narasimhan, M.L., Wilson, K.A., Nielsen, S.S., Bressan, R.A., Hasegawa, P.M.: Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. — Plant Physiol. 112: 1201–1210, 1996.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boué, S.M., Carter, C.H., Ehrlich, K.C., Cleveland, T.E.: Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus. — J. Agr. Food Chem. 48: 2167–2172, 2000.CrossRefGoogle Scholar
  6. Dafoe, N.J., Huffaker, A., Vaughan, M.M., Duehl, A.J., Teal, P.E., Schmelz, E.A.: Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis. — J. chem. Ecol. 37: 984–991, 2011.CrossRefPubMedGoogle Scholar
  7. Dafoe, N.J., Thomas, J.D., Shirk, P.D., Legaspi, M.E., Vaughan, M.M., Huffaker, A., Teal, P.E., Schmelz, E.A.: European corn borer (Ostrinia nubilalis) induced responses enhance susceptibility in maize. - PLoS ONE 8: 2013.Google Scholar
  8. Erb, M., Meldau, S., Howe, G.A.: Role of phytohormones in insect-specific plant reactions. — Trends Plant Sci. 17: 250–259, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Glazebrook, J.: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. — Annu. Rev. Phytopathol. 43: 205–227, 2005.CrossRefPubMedGoogle Scholar
  10. Graham, T.L., Graham, M.Y.: Glyceollin elicitors induce major but distinctly different shifts in isoflavonoid metabolism in proximal and distal soybean cell populations. — Mol. Plant-Microbe Interact. 4: 60–68, 1991.CrossRefGoogle Scholar
  11. Graham, T.L., Graham, M.Y.: Signaling in soybean phenylpropanoid responses. Dissection of primary, secondary, and conditioning effects of light, wounding, and elicitor treatments. — Plant Physiol. 110: 1123–1133, 1996.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hahn, M.G., Bonhoff, A., Grisebach, H.: Quantitative localization of the phytoalexin glyceollin in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma f. sp. glycinea. — Plant Physiol. 77: 591–601, 1985.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hart, S.V., Kogan, M., Paxton, J.D.: Effect of soybean phytoalexins on the herbivorous insects mexican bean beetle and soybean looper. — J. chem. Ecol. 9: 657–672, 1983.CrossRefPubMedGoogle Scholar
  14. Hatchett, J.H., Daugherty, D.M., Robbins, J.C., Barry, R.M., Houser, E.C.: Biology in Missouri of Dectes texanus, a new pest of soybean. — Ann. entomol. Soc. Amer. 68: 209–213, 1975.CrossRefGoogle Scholar
  15. Howe, G.A., Jander, G.: Plant immunity to insect herbivores. — Annu. Rev. Phytopathol. 59: 41–66, 2008.Google Scholar
  16. Hu, R., Fan, C., Li, H., Zhang, Q., Fu, Y.: Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. — BMC mol. Biol. 10: 93, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Huang, J.S., Barker, K.R.: Glyceollin in soybean-cyst nematode interactions: spatial and temporal distribution in roots of resistant and susceptible soybeans. — Plant Physiol. 96: 1302–1307, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kaplan, D.T., Thomason, I.J., Keen, N.T.: Association of glyceollin with the incompatible response of soybean roots to Meloidogyne incognita. — Physiol. Plant Pathol. 16: 309–318, 1980a.CrossRefGoogle Scholar
  19. Kaplan, D.T., Thomason, I.J., Keen, N.T.: Studies on the mode of action of glyceollin in soybean incompatibility to the root knot nematode, Meloidogyne incognita. — Physiol. Plant Pathol. 16: 319–325, 1980b.CrossRefGoogle Scholar
  20. Liu, S., Norris, D.M., Hartwig, E.E., Xu, M.: Inducible phytoalexins in juvenile soybean genotypes predict soybean looper resistance in the fully developed plants. — Plant Physiol. 100: 1479–1485, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔct method. — Methods 25: 402–408, 2001.CrossRefPubMedGoogle Scholar
  22. Lygin, A.V., Hill, C.B., Zernova, O.V., Crull, L., Widholm, J.M., Hartman, G.L., Lozovaya, V.V.: Response of soybean pathogens to glyceollin. — Phytopathoogy 100: 897–903, 2010.CrossRefGoogle Scholar
  23. Malik, N., Zhang, Z., Erhardt, P.: Total synthesis of (±)- glyceollin II and a dihydro derivative. — J. Natur. Prod. 78: 2940–2947, 2015.CrossRefGoogle Scholar
  24. Mason, H.S., Dewald, D.B., Creelman, R.A., Mullet, J.E.: Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars. — Plant Physiol. 98: 859–867, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mason, H.S., Mullet, J.E.: Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. — Plant Cell 2: 569–579, 1990.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Neter, J., Wasserman, W., Kutner, M.H.: Applied Linear Regression Models. 2nd Ed. - Mcgraw-Hill, Irwin - Homewood 1989.Google Scholar
  27. Pearce, G., Munske, G., Yamaguchi, Y., Ryan, C.A.: Structureactivity studies of GmSubPep, a soybean peptide defense signal derived from an extracellular protease. — Peptides 31: 2159–2164, 2010a.CrossRefPubMedGoogle Scholar
  28. Pearce, G., Yamaguchi, Y., Barona, G., Ryan, C.A.: A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes. — Proc. nat. Acad. Sci. USA 107: 14921–14925, 2010b.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Schmelz, E.A., Engelberth, J., Tumlinson, J.H., Block, A., Alborn, H.T.: The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. — Plant J. 39: 790–808, 2004.CrossRefPubMedGoogle Scholar
  30. Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C., Jackson, S.A.: Genome sequence of the palaeopolyploid soybean. — Nature 463: 178–183, 2010.CrossRefPubMedGoogle Scholar
  31. Schopfer, C.R., Ebel, J.: Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA. — Mol. gen. Genet. 258: 315–322, 1998.CrossRefPubMedGoogle Scholar
  32. Schopfer, C.R., Kochs, G., Lottspeich, F., Ebel, J.: Molecular characterization and functional expression of dihydroxypterocarpan 6a-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosynthesis in soybean (Glycine max L.). — FEBS Lett. 432: 182–186, 1998.CrossRefPubMedGoogle Scholar
  33. Suzuki, G., Ohta, H., Kato, T., Igarashi, T., Sakai, F., Shibata, D., Takano, A., Masuda, T., Shioi, Y., Takamiya, K.: Induction of a novel cytochrome P450 (CYP93 family) by methyl jasmonate in soybean suspension-cultured cells. — FEBS Lett. 383: 83–86, 1996.CrossRefPubMedGoogle Scholar
  34. Veech, J.A.: Phytoalexins and their role in the resistance of plants to nematodes. — J. Nematol. 14: 2–9, 1982.PubMedPubMedCentralGoogle Scholar
  35. Yamaguchi, Y., Barona, G., Ryan, C.A., Pearce, G.: GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes. — Plant Physiol. 156: 932–942, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zavala, J.A., Casteel, C.L., Nabity, P.D., Berenbaum, M.R., DeLucia, E.H.: Role of cysteine proteinase inhibitors in preference of japanese beetles (Popillia japonica) for soybean (Glycine max) leaves of different ages and grown under elevated CO2. — Oecologia 161: 35–41, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. J. Kinzler
    • 1
  • Z. A. Prokopiak
    • 1
  • M. M. Vaughan
    • 2
  • P. W. Erhardt
    • 3
  • J. G. Sarver
    • 3
  • J. A. Trendel
    • 3
  • Z. Zhang
    • 3
  • N. J. Dafoe
    • 1
  1. 1.Department of BiologySlippery Rock UniversitySlippery RockUSA
  2. 2.National Center for Agricultural Utilization ResearchUSDAPeoriaUSA
  3. 3.Center for Drug Design and DevelopmentUniversity of Toledo2801 ToledoUSA

Personalised recommendations