Biologia Plantarum

, Volume 60, Issue 3, pp 555–562 | Cite as

Effect of exogenous abscisic acid on cold acclimation in two Magnolia species

  • Y. Yang
  • N. Yao
  • Z. K. Jia
  • J. Duan
  • F. J. Chen
  • Z. Y. Sang
  • L. Y. Ma
Original papers


In northern China, freezing injury is observed frequently in the rare species Magnolia wufengensis but not in the more common species Magnolia denudata. To investigate the role of the phytohormone abscisic acid (ABA) on frost tolerance in these two species, exogenous ABA was applied to the seedlings and then physiological and biochemical responses were measured during cold acclimation. Shoot growth cessation was stimulated by ABA in M. wufengensis but not in M. denudata. Abscisic acid inhibited shoot growth in M. wufengensis but not in M. denudata. Treatment with ABA stimulated leaf senescence in both species, and this effect was greater in M. denudata. For both species, ABA-treated plants exhibited bud dormancy sooner and had an increased tolerance to freezing, decreased water content and increased accumulation of proline, glucose, and fructose in shoots. These effects were generally greater for M. denudata. Freezing tolerance was significantly correlated with content of water, proline, glucose, and fructose for both species, but freezing tolerance was significantly correlated with raffinose content only in M. wufengensis. We conclude that exogenous ABA could increase cold acclimation and improve cold hardiness of both Magnolia species, although M. denudata was more responsive to ABA than M. wufengensis, which might result from a greater dehydration and accumulation of proline and certain soluble sugars.

Additional key words

freezing tolerance Magnolia denudata M. wufengensis proline soluble sugar 



abscisic acid


number of days to 50 % budburst


low temperature representing 50 % relative electrolyte leakage


net photosynthetic rate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvim, R., Hewett, E., Saunders, P.F.: Seasonal variation in the hormone content of willow. — Plant Physiol. 57: 474–476, 1976.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anchordoguy, T., Rudolph, A., Carpenter, J., Crowe, J.: Modes of interaction of cryoprotectants with membrane phospholipids during freezing. — Cryobiology 24: 324–331, 1987.CrossRefPubMedGoogle Scholar
  3. Bates, L.S., Waldren, R.P., Teare, L.D.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  4. Bravo, A., Zuniga, G.E., Alberdi, M., Corcuera, L.J.: The role of ABA in freezing tolerance and cold acclimation. — Physiol Plant. 103: 17–23, 1998.CrossRefGoogle Scholar
  5. Churchill, G.C., Reaney, M.J.T., Abrams, S.R., Gusta, L.V.: Effects of abscisic acid and abscisic acid analogs on the induction of freezing tolerance of winter rye (Secale cereale L.) seedlings. — Plant Growth Regulat. 25: 35–45, 1998.CrossRefGoogle Scholar
  6. Cox, S.E., Stushnoff, C.: Temperature-related shifts in soluble carbohydrate content during dormancy and cold acclimation in Populus tremuloides. — Can. J. Forest Res. 31: 730–737, 2001.CrossRefGoogle Scholar
  7. Dallaire, S., Houde, M., Gagne, Y., Saini, H.S., Boileau, S.: ABA and low-temperature induce freezing tolerance via distinct regulatory pathways in wheat. — Plant Cell Physiol. 35: 1–9, 1994.Google Scholar
  8. Dhont, C.: Nitrogen reserves, spring regrowth and winter survival of field-grown alfalfa (Medicago sativa) defoliated in the autumn. — Ann. Bot. 97: 109–120, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gusta, L.V., Wisniewski, M., Nesbitt, N.T., Gusta, M.L.: The effect of water, sugars and proteins on the pattern of ice nucleation and propagation in acclimated an nonacclimated canola leaves. — Plant Physiol. 135: 1642–1653, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Guy, C.L.: Freezing tolerance of plants: current understanding and selected emerging concepts. — Can. J. Bot. 81: 1216–1223, 2003.CrossRefGoogle Scholar
  11. Guy, C.L., Huber, J.L.A., Huber, S.C.: Sucrose phosphate synthase and sucrose accumulation at low temperature. — Plant Physiol. 100: 502–508, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hare, P.D., Cress, W.A.: Metabolic implications of stress-induced proline accumulation in plants. — J. Plant Growth Regul. 21: 79–102, 1997.CrossRefGoogle Scholar
  13. Hincha, D., Bakaltcheva, I., Schmitt, J.: Galactose specific lectins protect isolated thylakoids against freeze-thaw damage. — Plant Physiol. 103: 59–65, 1993.PubMedPubMedCentralGoogle Scholar
  14. Jones, K., Paroschy, J., McKersie, B., Bowley, S.: Carbohydrate composition and freezing tolerance of canes and buds in Vitis vinifera. — J Plant Physiol. 155: 101–106, 1999.CrossRefGoogle Scholar
  15. Jun, H.L., Duk, J.Y., Su, J.K., Doil, C., Hee, J.L.: Intraspecies differences in cold hardiness, carbohydrate content and β-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation. — Tree Physiol. 32: 1533–1540, 2012.CrossRefGoogle Scholar
  16. Kasuga, J., Arakawa, K., Fujikawa, S.: High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. — New Phytol. 174: 569–579, 2007.CrossRefPubMedGoogle Scholar
  17. Keller, M.: The Science of Grapevines: Anatomy and Physiology. 1th Ed. - Academic Press, Burlington 2010.Google Scholar
  18. Koussa, T., Cherrad, M., Bertrand, A., Broquedis, M.: Comparison of the contents of starch, soluble carbohydrates and abscisic acid of latent buds and internodes during the vegetative cycle of grapevine. — Vitis 37: 5–10, 1998.Google Scholar
  19. Kozlowski, T.T., Pallardy, S.G.: Acclimation and adaptive responses of woody plants to environmental stresses. — Bot Rev. 68: 270–334, 2002.CrossRefGoogle Scholar
  20. Kucera, B., Cohn, A., Leubner-Metzger, G.: Plant hormone interactions during seed dormancy release and germination. — Seed Sci. Res. 15: 281–307, 2005.CrossRefGoogle Scholar
  21. Li, C., Junttila, O., Heino, P., Palva, E.T.: Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. — Tree Physiol. 23: 481–487, 2003.CrossRefPubMedGoogle Scholar
  22. Li, C., Wu, N., Liu, S.: Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia. — Biol. Plant. 49: 65–71, 2005a.CrossRefGoogle Scholar
  23. Li, C., Yang, Y., Junttila, O., Palva, E.T.: Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.) ecotypes. — Plant Sci. 168: 1365–1370, 2005b.CrossRefGoogle Scholar
  24. Lim, C.C., Arora, R.: Comparing Gompertz and Richards functions to estimate freezing injury in Rhododendron using electrolyte leakage. — J. amer. Soc. hort. Sci. 123: 246–252, 1998.Google Scholar
  25. Liu, F., Jensen, C.R., Andersen, M.N.: Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. — Field Crops Res. 86: 1–13, 2004.CrossRefGoogle Scholar
  26. Ma, L.Y., Wang, L.R., He, S.C., Liu, X., Wang, X.Q.: A new species of Magnolia (Magnoliaceae) from Hubei, China. — Bull. bot. Res. 26: 4–7, 2006a.Google Scholar
  27. Ma, L.Y., Wang, L.R., He, S.C., Liu, X., Wang, X.Q.: A new variety of Magnolia (Magnoliaceae) from Hubei, China. — Bull. bot. Res. 26: 517–519, 2006b.Google Scholar
  28. Matysik, J., Alia, A., Bhalu, B., Mohanty, P.: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. — Curr Sci. 82: 525–532, 2002.Google Scholar
  29. Mohapatra, S.S., Poole, R.J., Dhindsa, R.S.: Abscisic acid-regulated gene expression in relation to freezing tolerance of cold-acclimated-specific genes of alfalfa. — Plant Physiol. 89: 375–380, 1988.CrossRefGoogle Scholar
  30. Mora-Herrera, M.E., Lopez-Delgado, H.A.: Freezing tolerance and antioxidant activity in potato microplants induced by abscisic acid treatment. — Amer. J. Potato Res. 84: 467–475, 2007.CrossRefGoogle Scholar
  31. Papageorgiou, G.C., Murata, N.: The unusually strong stabilising effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. — Photosynth. Res. 44: 243–252, 1995.CrossRefPubMedGoogle Scholar
  32. Park, J.H., Oh, S.A., Kim, Y.H., Woo, H.R., Nam, H.G.: Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescenceinducing factors in Arabidopsis. — Plant mol. Biol. 37: 445–454, 1998.CrossRefPubMedGoogle Scholar
  33. Pearce, R.S.: Plant freezing and damage. — Ann Bot. 87: 417–424, 2001.CrossRefGoogle Scholar
  34. Rajashekar, C., Lafta, A. Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. — Plant Physiol. 111: 605–612, 1996.PubMedPubMedCentralGoogle Scholar
  35. Stushnoff, C., Seufferheld, M., Creegan, T.: Oligosaccharides as Endogenous Cryoprotectants in Woody Plants. - Plenum Press, New York 1997.CrossRefGoogle Scholar
  36. Suojala, T., Lindén, L.: Frost hardiness of Philadelphus and Hydrangea clones during ecodormancy. — Acta agr. scand. B Soil Plant Sci. 47: 58–63, 1997.Google Scholar
  37. Teets, T.M., Hummel, R.L., Guy, C.L.: Cold-acclimation of Hibiscus rosa-sinensis L. and Hybiscus syriacus L. in natural and controlled environments. — Plant Cell Environ. 12: 495–502, 1989.CrossRefGoogle Scholar
  38. Weiser, C.J.: Cold resistance and injury in woody plants. — Science 169: 1269–1278, 1970.CrossRefPubMedGoogle Scholar
  39. Williams, B.J., Pellett, N.E., Klein, R.M.: Phytochrome control of growth cessation and initiation of cold-acclimation in selected woody plants. — Plant Physiol. 50: 262–265, 1972.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zabadal, T.J., Dami, I.E., Goffinet, M.C., Martinson, T.E., Chien, M.L.: Winter injury to grapevines and methods of protection. — Michigan State Univ. Ext. Bull. 2930: 1–101, 2007.Google Scholar
  41. Zuther, E., Buchel, K., Hundertmark, M., Sitt, M., Hincha, D.: The role of raffinose in the cold acclimation response of Arabidopsis thaliana. — FEBS Lett. 576: 169–173, 2004.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Y. Yang
    • 1
  • N. Yao
    • 2
  • Z. K. Jia
    • 2
  • J. Duan
    • 3
  • F. J. Chen
    • 4
  • Z. Y. Sang
    • 5
  • L. Y. Ma
    • 2
  1. 1.Forestry DepartmentBeijing University of AgricultureBeijingP.R. China
  2. 2.Laboratory for Silviculture and ConservationBeijing Forestry UniversityBeijingP.R. China
  3. 3.National Energy R&D Center for Non-food BiomassBeijing Forestry UniversityBeijingP.R. China
  4. 4.Biotechnology Research CenterThree Gorges UniversityYichang, Hubei ProvinceP.R. China
  5. 5.Forestry Bureau of Wufeng CountyWufeng, Hubei ProvinceP.R. China

Personalised recommendations