Biologia Plantarum

, Volume 60, Issue 3, pp 435–442 | Cite as

Banana MaEF1A facilitates plant growth and development

Original papers


Plant translation elongation factor 1 alpha (EF1A) is both a protein synthesis factor and an important component of plant signal transduction, immune responses, protein trafficking, and apoptosis. However, its role in plant growth and development remains unclear. Herein, a full-length EF1A gene was isolated from banana (Musa acuminata L.) fruit and termed MaEF1A. We found that MaEF1A shared a high sequence identify with respective genes in other plants and the deduced amino acid sequence contained conserved regions of GTP-EFTU, GTP-EFTU-02, and GTP-EFTU-03, as well as two tRNA binding domains and six GTP-binding sites which represent functional domains for protein biosynthesis. MaEF1A protein is mainly localized to the nucleus. MaEF1A was constitutively expressed in different banana organs including developing fruits, and the highest expression was detected in ovary 4 stage. Arabidopsis thaliana L. (ecotype Columbia) was transformed with MaEF1A and four transgenic lines were obtained. Three transgenic lines were selected for further phenotypic analyses. Our findings indicate that overexpressed MaEF1A could greatly enhance plant height, root length, and both rhachis and silique length by promoting cell expansion and elongation. These experiments suggest an important role for MaEF1A in plant growth and development.

Additional key words

Arabidopsis thaliana gene expression Musa acuminata plant development transgenic plants 



cauliflower mosaic virus


cycle threshold


elongation factor 1 alpha


green fluorescent protein


open reading frame


reverse transcriptase-polymerase chain reaction


scanning electron microscopy


transcription elongation factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aragón, C., Carvalho, L., González, J., Escalona, M., Amâncio, S.: Ex vitro acclimatization of plantain plantlets micropropagated in temporary immersion bioreactor. — Biol. Plant. 54: 237–244, 2010.CrossRefGoogle Scholar
  2. Asif, M.H., Dhawan, P., Nath, P.: A simple procedure for the isolation of high quality RNA from ripening banana fruit. — Plant mol. Biol. Rep. 18: 109–115, 2000.CrossRefGoogle Scholar
  3. Andersen, G.R., Nissen, P., Nyborg, J.: Elongation factors in protein biosynthesis. — Trends Biochem. Sci. 28: 434–441, 2003.CrossRefPubMedGoogle Scholar
  4. Bechtold, N., Ellis, J., Pelletier, G.: In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. — Compt. rend. Acad. Sci. III. 316: 1194–1199, 1993.Google Scholar
  5. Berthelot, K., Lecomte, S., Estevez, Y., Coulary-Salin, B., Bentaleb, A., Cullin, C., Deffieux, A., Peruch, F.: Rubber elongation factor (REF), a major allergen component in Hevea brasiliensis latex has amyloid properties. — PLoS ONE 7: e48065, 2012.CrossRefGoogle Scholar
  6. Bouzaidi-Tiali, N., Aeby, E., Charriere, F., Pusnik, M., Schneider, A.: Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei. — EMBO J. 26: 4302–4312, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Browning, K.: The plant translational apparatus. — Plant mol. Biol. 32: 107–144, 1996.CrossRefPubMedGoogle Scholar
  8. Dürr, J., Lolas, I.B., Sørensen, B.B., Schubert, V., Houben, A., Melzer, M., Deutzmann, R., Grasser, M., Grasser, K.D.: The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis. — Nucl. Acids Res. 42: 4332–4347, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ejiri, S.: Moonlighting functions of polypeptide elongation factor 1: from actin bindling to zinc finger protein R1-associated nuclear localization. — Biosci. Biotechnol. Biochem. 66: 1–21, 2002.CrossRefPubMedGoogle Scholar
  10. Furukawa, T., Inagaki, H., Takai, R., Hirai, H., Che, F.S.: Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis. — Mol. Plant Microbe Interact. 27: 113–124, 2014.CrossRefPubMedGoogle Scholar
  11. Grasser, K.D.: Emerging role for transcript elongation in plant development. — Trends Plant Sci. 10: 484–490, 2005.CrossRefPubMedGoogle Scholar
  12. Hershkovitz, V., Sela, N., Taha-Salaime, L., Liu, J., Rafael, G., Kessler, C., Aly, R., Levy, M., Wisniewski, M., Droby, S.: De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatum and grapefruit peel. — BMC Genomics 14: 168, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hotokezaka, Y., Tobben, U., Hotokezaka, H., Van Leyen, K., Beatrix, B., Smith, D.H., Nakamura, T., Wiedmann, M.: Interaction of the eukaryotic elongation factor 1A with newly synthesized polypeptides. — J. biol. Chem. 277: 18545–18551, 2002.CrossRefPubMedGoogle Scholar
  14. Liu, J.H., Zhang, J., Jia, C.H., Zhang, J.B., Wang, J.S., Yang, Z. X., Xu, B.Y., Jin, Z.Q.: The interaction of banana MADS-box protein MuMADS1 and ubiquitin activating enzyme E-MuUBA in postharvest banana fruit. — Plant Cell Rep. 32: 129–137, 2013.CrossRefPubMedGoogle Scholar
  15. Livak, K., Schmittgen, T.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. — Methods 25: 402–408, 2001.CrossRefPubMedGoogle Scholar
  16. Merrick, W.C.: Mechanism and regulation of eukaryotic protein synthesis. — Microbiol. Rev. 56: 291–315, 1992.PubMedPubMedCentralGoogle Scholar
  17. Saunders, A., Core, L. J., Lis, J. T.: Breaking barriers to transcription elongation. — Nat. Rev. mol. cell. Biol. 7: 557–567, 2006.CrossRefPubMedGoogle Scholar
  18. Selth, L.A., Sigurdsson, S., Svejstrup, J.Q.: Transcript elongation by RNA polymerase II. — Annu. Rev. Biochem. 79: 271–293, 2010.CrossRefPubMedGoogle Scholar
  19. Shin, D., Moon, S.J., Park, S.R., Kim, B.G., Byun, M.O.: Elongation factor 1a from A. thaliana functions as molecular chaperone and confers resistance to salt stress in yeast and plants. — Plant Sci. 177: 156–160, 2009.CrossRefGoogle Scholar
  20. Sims, R.J., Belotserkovskaya, R., Reinberg, D.: Elongation by RNA polymerase II: the short and the long of it. — Genes Dev. 18: 2437–2468, 2004.CrossRefPubMedGoogle Scholar
  21. Smith, E., Shilatifard, A.: Transcriptional elongation checkpoint control in development and disease. — Genes Dev. 27: 1079–1088, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Suhandono, S., Apriyanto, A., Ihsani, N.: Isolation and characterization of three cassava elongation factor 1 alpha (MeEF1A) promoters. — PLoS ONE 9: e84692, 2014.CrossRefGoogle Scholar
  23. Toueille, M., Saint-Jean, B., Castroviejo, M., Benedetto, J.P.: The elongation factor 1a: a novel regulator in the DNA replication/repair protein network in wheat cells? — Plant Physiol. Biochem. 45: 113–118, 2007.CrossRefPubMedGoogle Scholar
  24. Van Lijsebettens, M., Grasser, K.D.: The role of the transcript elongation factors FACT and HUB1 in leaf growth and the induction of flowering. — Plant Signal Behav. 5: 715–717, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Xu, W.L., Wang, X.L., Wang, H., Li, X.B.: Molecular characterization and expression analysis of nine cotton GhEF1A genes encoding translation elongation factor 1A. — Gene 389: 27–35, 2007.CrossRefPubMedGoogle Scholar
  26. Yamaji, Y., Sakurai, K., Hamada, K., Komatsu, K., Ozeki, J., Yoshida, A., Yoshii, A., Shimizu, T., Namba, S., Hibi, T.: Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection. — Arch.Virol. 155: 263–268, 2010.CrossRefPubMedGoogle Scholar
  27. Yang, W., Burkhart, W., Cavallius, J., Merrick, W. C., Boss, W. F.: Purification and characterization of a phospha-tidylinositol 4-kinase activator in carrot cells. — J. biol. Chem. 268: 392–398, 1993.PubMedGoogle Scholar
  28. Zhu, B., Peng, R. H., Xiong, A. S., Xu, J., Fu, X.Y., Zhao, W., Jin, X.F., Meng, X.R., Gao, J.J., Cai, R., Yao, Q.H.: Transformation with a gene for myo-inositol O-methyltransferase enhances the cold tolerance of Arabidopsis thaliana. — Biol. Plant. 56: 135–139, 2012.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Key Laboratory of Tropical Crop Biotechnology, Ministry of AgricultureChinese Academy of Tropical Agricultural SciencesHaikouP.R. China
  2. 2.Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouP.R. China
  3. 3.Haikou Experimental StationChinese Academy of Tropical Agricultural SciencesHaikouChina
  4. 4.Huazhong Agricultural UniversityWuhanP.R. China

Personalised recommendations