Skip to main content
Log in

Crosstalk of nitric oxide with calcium induced tolerance of tall fescue leaves to high irradiance

  • Original papers
  • Published:
Biologia Plantarum

Abstract

Calcium ion (Ca2+) is essential secondary messenger in plant signaling networks. In this study, the effect of Ca2+ on oxidative damage caused by a high irradiance (HI) was investigated in the leaves of two cultivars of tall fescue (Arid3 and Houndog5). Pretreatment of the tall fescue leaves with a CaCl2 solution significantly increased Ca2+ content and intrinsic HI tolerance due to a decreased ion leakage and content of malondialdehyde, hydrogen peroxide, and superoxide radicals. Moreover, the activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase increased in both the cultivars in the presence of Ca2+ under the HI stress. In contrast, treatments with a Ca2+ chelator ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) or a plasma membrane Ca2+ channel blocker LaCl3 reversed these effects. On the other hand, a pronounced increase in nitric oxide synthase-like activity and NO release by exogenous Ca2+ treatment was observed in the tolerant Arid3 plants after exposure to the HI, whereas only a small increase was observed in more sensitive Houndog5. Moreover, the inhibition of NO production by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or N ω-nitro-L-arginine blocked the protective effect of exogenous Ca2+, whereas the inhibition of Ca2+ by EGTA or LaCl3 had no influence on the protective effect of NO. The results indicate that NO might be involved in the Ca2+-induced activities of antioxidant enzymes further protecting against HI-induced oxidative damage. This protective mechanism was found to be more efficient in Arid3 than in Houndog5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

APX:

ascorbate peroxidase

CAT:

catalase

EGTA:

ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid

GR:

glutathione reductase

HI:

high irradiance

LI:

low irradiance

LNNA:

N ω-nitro-L-arginine

NO:

nitric oxide

NOS:

nitric oxide synthase

PPFD:

photosynthetic photon flux density

PTIO:

2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

PVP:

polyvinylpyrrolidone

ROS:

reactive oxygen species

SNP:

sodium nitroprusside

SOD:

superoxide dismutase

References

  • Aebi, H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Ali, M.B., Hahn, E.J., Paek, K.Y.: Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet. — Environ. exp. Bot. 54: 109–120, 2005.

    Article  CAS  Google Scholar 

  • Al-Whaibi, M.H., Siddiqui, M.H., Basalah, M.O.: Salicylic acid and calcium-induced protection of wheat against salinity. — Protoplasma 249: 769–778, 2012.

    Article  CAS  PubMed  Google Scholar 

  • An, L.Z., Liu, Y.H., Zhang, M.X., Chen, T., Wang, X.L.: Effects of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation. — J. Plant Physiol. 162: 317–326, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Asada, K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. — Plant Physiol. 141: 391–396, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, X.Y., Dong, Y.J., Wang, Q.H., Xu, L.L., Kong, J., Liu, S.: Effect of lead and nitric oxide on photosynthesis, antioxidative ability, and mineral element content of perennial ryegrass. — Biol. Plant 59: 163–170, 2015.

    Article  CAS  Google Scholar 

  • Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.

    Article  CAS  PubMed  Google Scholar 

  • Beligni, M.V., Lamattina, L.: Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. — Planta 210: 215–221, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee, S.: Calcium-dependent signaling pathway in the heat-induced oxidative injury in Amaranthus lividus. — Biol. Plant. 52: 137–140, 2008.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Bright, J., Desikan, R., Hancock, J.T., Weir, I.S., Neill, S.J.: ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. — Plant J. 45: 113–122, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Buege, J.A., Aust, S.D.: Microsomal lipid peroxidation. — Methods Enzymol. 52: 302–310, 1978.

    Article  CAS  PubMed  Google Scholar 

  • Burritt, D.J., Mackenzie, S.: Antioxidant metabolism during acclimation of Begonia × erythrophylla to high light levels. — Ann. Bot. 91: 783–794, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandok, M.R., Ytterberg, A.J., Van Wijk, K.J., Klessig, D.F.: The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. — Cell 113: 469–482, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y.H., Kao, C.H.: Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. — Protoplasma 249: 187–195, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Courtois, C., Besson, A., Dahan, J., Bourque, S., Dobrowolska, G., Pugin, A., Wendehenne, D.: Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. — J. exp. Bot. 59: 155–163, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Corpas, F.J., Leterrier, M., Valderrama, R., Airakia, M., Chaki, M., Palma, J.M., Barroso, J.B.: Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. — Plant Sci. 181: 604–611, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Elstner, E.F., Heupel, A.: Inhibition of nitrite formation from hydroxyllammonium chloride: a simple assay for superoxide dismutase. — Anal. Biochem. 70: 616–620, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., Halliwell, B.: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role on ascorbic acid metabolism. — Planta 133: 21–25, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata, C., Lamattina L.: Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. — Nitric Oxide 17: 143–151, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Gong, M., Chen, S.N., Song, Y.Q., Li, Z.G.: Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant system in maize seedlings. — Aust. J. Plant Physiol. 24: 371–379, 1997.

    Article  CAS  Google Scholar 

  • Gong M., Van der Luit, A.H., Knight, M.R., Trewavas, A.J.: Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. — Plant Physiol. 116: 429–437, 1998.

    Article  CAS  PubMed Central  Google Scholar 

  • Guo, F.Q., Okamoto, M., Crawford, N.M.: Identification of a plant nitric oxide synthase gene involved in hormonal signaling. — Science 302: 100–103, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, M., Zhang, J.: Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. — Plant Cell Environ. 26: 929–939, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y.W., Huang, B.R.: Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. — J. exp. Bot. 52: 341–349, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Lanteri, M.L., Pagnussat, G.C., Lamattina, L.: Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber. — J. exp. Bot. 57: 1341–1351, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Laspina, N.V., Groppa, M.D., Tomaro, M.L., Benavides, M.P.: Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. — Plant Sci. 169: 323–330, 2005.

    Article  CAS  Google Scholar 

  • Murphy, M.E., Noack, E.: Nitric oxide assay using hemoglobin method. — Methods Enzymol. 233: 240–250, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nasir Khan, M., Siddiqui, M.H., Mohammad, F., Naeem, M.: Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. — Nitric Oxide 27: 210–218, 2012.

    Article  PubMed  Google Scholar 

  • Neill, S.J., Desikan, R., Hancock, J.T.: Nitric oxide signalling in plants. — New Phytol. 159: 11–35, 2003.

    Article  CAS  Google Scholar 

  • Sairam, R.K., Srivastava, G.C.: Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. — Plant Sci. 162: 897–904, 2002.

    Article  CAS  Google Scholar 

  • Shi, H.T., Ye, T.T., Zhong, B., Liu, X., Chan, Z.L.: Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium. — J. Integr. Plant Biol. 56: 1064–1079, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Tossi, V., Cassia, R., Bruzzone, S., Zocchi, E., Lamattina, L.: ABA says NO to UV-B: a universal response? — Trends Plant Sci. 17: 510–517, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Veljovic-Jovanovic, S., Noctor, G., Foyer, C.H.: Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. — Plant Physiol. Biochem. 40: 501–507, 2002.

    Article  CAS  Google Scholar 

  • Wu, S.J., Wu, J.Y.: Extracellular ATP-induced NO production and its dependence on membrane Ca2+ flux in Salvia miltiorrhiza hairy roots. — J. exp. Bot. 59: 4007–4016, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y.F., Fu, J.J., Chu, X.T., Sun, Y.F., Zhou, H., Hu, T.M.: Nitric oxide mediates abscisic acid induced light-tolerance in leaves of tall fescue under high-light stress. — Sci. Hort. 162: 1–10, 2013.

    Article  CAS  Google Scholar 

  • Xu, Y.F., Sun, X.L, Jin, J.W., Zhou, H.: Protective effect of nitric oxide on light-induced oxidative damage in leaves of tall fescue. — J. Plant Physiol. 167: 512–518, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., He, J.X., Wang, X.M., Zhang, L.X.: Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. — J. Plant Physiol. 165: 182–191, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. F. Xu or T. M. Hu.

Additional information

Acknowledgements: This work was supported by the National Natural Science Foundation of China (No. 31402129) and Key Projects in the National Science & Technology Pillar Program in the Twelfth Five-year Plan Period (No. 2011BAD17B05).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y.F., Chu, X.T., Fu, J.J. et al. Crosstalk of nitric oxide with calcium induced tolerance of tall fescue leaves to high irradiance. Biol Plant 60, 376–384 (2016). https://doi.org/10.1007/s10535-016-0597-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0597-3

Additional key words

Navigation