Advertisement

Biologia Plantarum

, Volume 60, Issue 2, pp 355–366 | Cite as

Anatomical, physiological, and biochemical traits involved in the UV-B radiation response in highbush blueberry

  • M. Reyes-Díaz
  • C. Meriño-Gergichevich
  • C. Inostroza-Blancheteau
  • M. Latsague
  • P. Acevedo
  • M. Alberdi
Original papers

Abstract

The effects of a long-term simulated spring-summer UV-B daily course on some anatomical, physiological, and biochemical features were studied in new and old leaves of blueberry (Vaccinium corymbosum L.) cultivars Legacy, Brigitta, and Bluegold. The results show that under UV-B exposure, leaf thickness increased in Bluegold due to an increased intercellular cavities. By contrast, Brigitta maintained its leaf thickness. The net photosynthetic rate was not significantly affected by the UV-B radiation in any of the cultivars; however, Brigitta presented a better photosystem II performance, since this cultivar had more efficient photochemistry under the UV-B radiation. In addition, Brigitta also maintained enhanced total phenol and total anthocyanin content compared to the other cultivars. In conclusion, Brigitta was more resistant to the UV-B radiation than the other two cultivars.

Additional key words

antioxidants carotenoids chlorophyll content chlorophyll fluorescence net photosynthetic rate Vaccinium corymbosum 

Abbreviations

ФPSI

effective quantum yield of photosystem II

Cars

carotenoids

Chl

chlorophyll

DPPH

2.2-diphenyl-1-picrylhydrazyl

Fv/Fm

variable to maximum fluorescence ratio

NPQ

non-photochemical quenching

PAR

photosynthetically active radiation

PN

net photosynthetic rate

PS

photosystem

ROS

reactive oxygen species

RSA

radical scavenging activity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S.: Increased antioxidant activity in Cassia seedlings under UV-B radiation. — Biol. Plant. 51: 157–160, 2007.CrossRefGoogle Scholar
  2. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.CrossRefPubMedGoogle Scholar
  3. Bolink, E.M., Van Schalkwiojk, I., Posthumus, F., Van Hasselt, P.R.: Grown under UV-B radiation increases tolerance to high light stress in pea and bean plants. — Plant Ecol. 154: 149–156, 2001.CrossRefGoogle Scholar
  4. Burchard, P., Bilger, W., Weissenböck, G.: Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet induced chlorophyll fluorescence measurements. — Plant Cell Environ 23: 1373–1380, 2000.CrossRefGoogle Scholar
  5. Caldwell, M.: Solar ultraviolet radiation as an ecological factor for alpine plants. — Ecol. Monograph. 38: 243–268, 1968.CrossRefGoogle Scholar
  6. Caldwell, M.M., Flint, S.D.: Uses of biological spectral weighting functions and the need of scaling for the ozone reduction problem. — Plant Ecol. 128: 67–76, 1997.CrossRefGoogle Scholar
  7. Chang, C., Yang, M.H., Wen, H.M., Chern, J.C.: Estimation of total flavonoid content in vegetables by two complementary colorimetric methods. — J. Food Drug Anal. 10: 178–182, 2002.Google Scholar
  8. Chinnici, F., Bendini, A.A., Gaiani, A., Riponi, C.: Radical scavenging activities of peels and pulps from cv. Golden delicious apples as related to their phenolic composition. — J. Agr. Food Chem. 52: 4684–4689, 2004.CrossRefGoogle Scholar
  9. Day, T.A.: Relating UV-B radiation screening effectiveness of foliage to absorbing-compound concentration and anatomical characteristic in a diverse group of plants. — Oecologia 95: 542–550, 1993.CrossRefGoogle Scholar
  10. Eichholz, I., Huyskens-Keil, S., Keller, A., Ulrich, D., Kroh, L.W., Rohn, S.: UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). — Food Chem. 126: 60–64, 2011.CrossRefGoogle Scholar
  11. Fukuda, S., Satoh, A., Kasahara, H., Matsuyama, H., Takeuchi, Y.: Effects of ultraviolet-B irradiation on the cuticular wax of cucumber (Cucumis sativus) cotyledons. — J. Plant Res. 121: 179–189, 2008.CrossRefPubMedGoogle Scholar
  12. Greenberg, B.M., Wilson, M.I., Huang, X.D., Duxbury, C.L., Garhardt, K.E., Gensemer, R.W.: The effects of ultraviolet-B radiation on higher plants. - In: Wang, W., Gorsuch, J.W., Hughes, J.S. (ed.): Plants for Environmental Studies. Pp 1–36. CRC Press, Boca Raton 1997.Google Scholar
  13. Guerrero, J.A.: Capacidad antioxidante, fenoles y antocianinas totales e inhibición de Botrytis cinerea Pers. Ex Fr. por extractos crudos de fruta de cultivares de arándano alto (Vaccinium corymbosum L.) según localidad de la zona Sur de Chile. [Antioxidant capacity, phenols and total anthocyanins of crude fruit extracts of highbush blueberry (Vaccinium corymbosum L.) cultivars from different sites of southern Chile and their effects on the inhibition of Botrytis cinerea Pers. Ex Fr.] - PhD Thesis. Universidad Austral de Chile, Valdivia 2006. [In Spanish]Google Scholar
  14. Guo, J., Han, W., Wang, M.H.: Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: a review. — Afr. J. Biotechnol. 25: 4966–4972, 2008.Google Scholar
  15. Harborne, J.B.: Nature, distribution and function of plant flavonoids. — Progr. clin. Biol. Res. 213: 14–24, 1986.Google Scholar
  16. Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil. — California Agr. Exp. Sta. 347: 1–32, 1959.Google Scholar
  17. Hollósy, F.: Effect of ultraviolet radiation on plant cells. — Micron 33: 179: 197, 2002.Google Scholar
  18. Huovinen, P., Gómez, I., Lovengreen, C.: A five-year study of solar ultraviolet radiation in Southern Chile (39º S): potential impact on physiology of coastal marine algae? — Photochem. Photobiol. 82: 515–522, 2006.CrossRefPubMedGoogle Scholar
  19. Ibañez, S., Rosa, M., Hilal, M., González, J.A., Prado, F.E.: Leaves of Citrus aurantifolia exhibit a different sensibility to solar UV-B radiation according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production. — J. Photochem. Photobiol. B: Biol. 90: 163–169, 2008.CrossRefGoogle Scholar
  20. Inostroza-Blancheteau, C., Reyes-Díaz, M., Aquea, F., Nunes-Nesi, A., Alberdi, M., Arce-Johnson, P.: Biochemical and molecular changes in response to aluminium-stress in highbush blueberry (Vaccinium corymbosum L.). — Plant Physiol. Biochem. 49: 1005–1012, 2011.CrossRefPubMedGoogle Scholar
  21. Inostroza-Blancheteau, C., Reyes-Díaz, M., Arellano, A., Latsague, M., Acevedo, P., Loyola, R., Arce-Johnson, P., Alberdi, M.: Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves. — Plant Physiol. Biochem. 85: 85–95, 2014.CrossRefPubMedGoogle Scholar
  22. Iwasa, Y., Kubo, T., Van Dam, N., De Jong, T.: Optimal level of chemicals defense decreasing with leaf age. — Theor. Popul. Biol. 50: 124–148, 1996.CrossRefPubMedGoogle Scholar
  23. Jaakola, L., Määttä-Riihinen, K., Kärenlampi, S., Hohtola, A.: Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. — Planta 218: 721–728, 2004.CrossRefPubMedGoogle Scholar
  24. Jansen, M.A.K., Gaba, B., Greenberg, B.M.: Higher plants and UV-B radiation: balancing damage repair and acclimation. — Trends Plant Sci. 3: 131–135, 1998.CrossRefGoogle Scholar
  25. Jansen, M.A.K., Van den Noort, R.E., Tan, M.Y., Prinsen, E., Lagrimini, L.M., Thorneley, R.N.: Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. — Plant Physiol. 126: 1012–1023, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Johanson, U., Gehrke, C., Bjoern, L.O., Callaghan, T.V.: The effects of enhanced UV-B radiation on the growth of dwarf shrubs in a subarctic heathland. — Funct. Ecol. 9: 713–719, 1995.CrossRefGoogle Scholar
  27. Jones, H.G., Archer, N., Rotenberg, E., Casa, R.: Radiation measurement for plant ecophysiology. — J. exp. Bot. 54: 879–889, 2003.CrossRefPubMedGoogle Scholar
  28. Jordan, B.R.: The effect of ultraviolet-B radiation on plants: a molecular perspective. — Adv. bot. Res. 22: 97–162, 1996.CrossRefGoogle Scholar
  29. Kakani, V.G., Reddy, K.R., Zhao, D., Mohammed, A.R.: Effects of utraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. — Ann. Bot. 91: 817–826, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Katerova, Z., Ivanov, S., Mapelli, S., Alexieva, V.: Phenols, proline and low-molecular thiol levels in pea (Pisum sativum) plants respond differently toward prolonged exposure to ultraviolet-B and ultraviolet-C radiations. — Acta Physiol. Plant. 31: 111–117, 2009.CrossRefGoogle Scholar
  31. Kolb, C., Käser, M., Kopecký, J., Zotz, G., Riederer, M., Pfündel, E.: Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. — Plant Physiol. 127: 863–875, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Krauss, P., Markstadter, C., Riederer, M.: Attenuation of UV-B radiation by plant cuticles from woody species. — Plant Cell Environ. 20: 1079–1085, 1997.CrossRefGoogle Scholar
  33. Lau, T.S.L., Eno, E., Goldstein, G., Smith, C., Christopher, D.A.: Ambient levels of UV-B in Hawaii combined with nutrient deficiency decrease photosynthesis in near-isogenic maize lines varying in leaf flavonoids: flavonoids decrease photoinhibition in plants exposed to UV-B. — Photosynthetica 44: 394–403, 2006.CrossRefGoogle Scholar
  34. Lazarova, D., Stanoeva, D., Popova, A., Vasilev, D., Velitchkova, M.: UV-B induced alteration of oxygen evolving reactions in pea thylakoid membranes as affected by scavengers of reactive oxygen species. — Biol. Plant. 58: 319–327, 2014.CrossRefGoogle Scholar
  35. Lichtenthaler, H., Wellburn, A.R.: Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. — Biochem. Soc. Trans. 603: 591–592, 1983.CrossRefGoogle Scholar
  36. Lyrene, P.M., Muñoz, C.: Blueberry production in Chile. — J. Small Fruit Viticult. 5: 1–20, 1997.CrossRefGoogle Scholar
  37. Mackerness, S.A.H., John, F.B., Jordan, B., Thomas, B.: Early signaling components in ultraviolet-B response: distinct roles for different reactive oxigen species and nitric oxide. — FEBS Lett. 489: 237–242, 2001.CrossRefGoogle Scholar
  38. Madronich, S.: Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the earth’s. — Geophysics Res. Lett. 19: 37–40, 1992.CrossRefGoogle Scholar
  39. Madronich, S., McKenzie, R.L., Björn, L.O., Cadwell, M.M.: Changes in biologicall ultraviolet radiation reaching the Earth`s surface. — J. Photochem. Photobiol. B Biol. 46: 5–19, 1998.CrossRefGoogle Scholar
  40. Maxwell, K. Johnson, G.N.: Chlorophyll fluorescence ? a practical guide. — J. exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  41. Merzlyak, M.N., Melø, T.B., Naqvi, K.R.: Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection. — J. exp. Bot. 59: 349–359, 2008.CrossRefPubMedGoogle Scholar
  42. Moon, Y.R., Lee, M.H., Tovuu, A., Lee, C.H., Chung, B.Y., Park, Y.I.l., Kim, J.H.: Acute exposure to UV-B sensitizes cucumber, tomato, and Arabidopsis plants to photooxidative stress by inhibiting thermal energy dissipation and antioxidant defense. — J. Radiat. Res. 52: 238–248, 2011.CrossRefPubMedGoogle Scholar
  43. Murphy, T.M., Vu, H.: Photoinactivation of superoxide synthases of the plasma membrane from rose (Rosa damascene Mill.) cells. — Photochem. Photobiol. 64: 106–109, 1996.CrossRefGoogle Scholar
  44. Namli, S., Isikalan, C., Akbas, F., Toker, Z., Tilkat, E.A.: Effects of UV-B radiation on total phenolic, flavonoid and hypericin contents in Hypericum retusum Aucher grown under in vitro conditions. — Natur. Prod. Res. 28: 2286–2292, 2014.CrossRefGoogle Scholar
  45. Nayak, L., Biswal, B., Ramaswamy, N.K., Iyer, R.K., Nair, J.S., Biswal, U.C.: Ultraviolet-A induced changes in photosystem II of thylakoids: effects of senescence and high growth temperature. — J. Photochem. Photobiol. B: Biol. 70: 59–65, 2003.CrossRefGoogle Scholar
  46. Pfündel, E.E., Pan, R.S., Dilley, R.A.: Inhibition of violaxanthin deepoxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. — Plant Physiol. 98: 1372–1380, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Phoenix, G.K., Gwynn-Jones, D., Callaghan, T.V., Sleep, D., Lee, J.A.: Effects of global change on a sub-arctic heath: effects of enhanced UV-B radiation and increased summer precipitation. — J. Ecol. 89: 256–267, 2001.CrossRefGoogle Scholar
  48. Pradhan, M.K., Joshi, P.N., Nair, J.S., Ramaswamy, N.K., Iyer, R.K., Biswal. B., Biswal, U.C.: UV-B exposure enhances senescence of wheat leaves: modulation by photosynthetically active radiation. — Radiat. Environ. Biophys. 45: 221–229, 2006.CrossRefPubMedGoogle Scholar
  49. Reifenrath, K., Muller, C.: Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. — Phytochemistry 68: 875–885, 2007.CrossRefPubMedGoogle Scholar
  50. Reyes-Díaz, M., Alberdi, M., Mora, M.L.: Short-term aluminum stress differentially affects the photochemical efficiency of photosystem II in highbush blueberry genotypes. — J.amer. Soc. hort. Sci. 134: 14–21, 2009.Google Scholar
  51. Reyes-Díaz, M., Meriño-Gergichevich, C., Alarcón, E., Alberdi, M., Horst, W.J.: Calcium sulfate ameliorates the effect of aluminum toxicity differentially in genotypes of highbush blueberry (Vaccinium corymbosum L.). — J. Soil Sci. Plant Nutr. 11: 59–78, 2011.CrossRefGoogle Scholar
  52. Ribera, A.E., Reyes-Díaz, M., Alberdi, M., Zuñiga, G.E., Mora, M.L.: Antioxidant compounds in skin and pulp of fruits change among genotypes and maturity stages in highbush blueberry (Vaccinium corymbosum L.) grown in southern Chile. — J. Soil Sci. Plant Nutr. 10: 509–536, 2010.CrossRefGoogle Scholar
  53. Riquelme, A., Wellmann, E., Pinto, M.: Effects of ultraviolet-B radiation on common bean (Phaseolus vulgaris L.) plants grown under nitrogen deficiency. — Environ. exp. Bot. 60: 360–367, 2007.CrossRefGoogle Scholar
  54. Rojas-Lillo, Y., Reyes-Díaz, M., Acevedo, P., Inostroza-Blancheteau, C., Alberdi, M., Mora, M.L.: Manganese toxicity and UV-B radiation differentially influence physiology and biochemistry of highbush blueberry (Vaccinium corymbosum L.) cultivars. — Funct. Plant Biol. 41: 156–167, 2014.CrossRefGoogle Scholar
  55. Rozema, J.: Stratospheric ozone depletion. - In Rozema, J. (ed.): The Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems. Pp. 59–69. Backhuys Publishers, Leiden 1999.Google Scholar
  56. Rozema, J., Chardonnens, A., Tosserams, M., Hafkenscheid, R., Bruijnzeel, S.: Leaf thickness and UV-B absorbing pigments of plants in relation to an elevational gradient along the Blue Mountains, Jamaica. — Plant Ecol. 128: 151–159, 1997.CrossRefGoogle Scholar
  57. Rozema, J., Van Geel, B., Björn, L.O., Lean, J., Madronich, S.: Toward solving the UV puzzle. — Science 296: 1621–1622, 2002.CrossRefPubMedGoogle Scholar
  58. Ruhland, C.T., Day, T.A.: Changes in UV-B radiation screening effectiveness with leaf age Rhododendron maximum. — Plant Cell Environ. 19: 740–746, 1996.CrossRefGoogle Scholar
  59. Santos, I., Fidalgo, F., Almeida, J.M., Salema, R.: Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. — Plant Sci. 167: 925–935, 2004.CrossRefGoogle Scholar
  60. Selvakumar, V.: Ultraviolet-B radiation (280-315 nm) invoked antioxidant defense systems in Vigna unguiculata (L.) Walp. and Crotalaria juncea L. — Photosynthetica 46: 98–106, 2008.CrossRefGoogle Scholar
  61. Semerdjieva, S.I., Phoenix, G.K., Hares, D., Gwynn-Jones, D., Callaghan, T.V., Sheffield, E.: Surface morphology, leaf and cuticle thickness of four dwarf shrubs from a sub-Arctic heath following long-term exposure to enhanced levels of UV-B. — Physiol. Plant. 117: 289–294, 2003.CrossRefGoogle Scholar
  62. Shao, H.B., Chu, L.Y., Shao, M.A., Jaleel, C.A., Mi, H.M.: Higher plant antioxidants and redox signaling under environmental stresses. — Compt. Rend. Biol. 331: 433–441, 2008.CrossRefGoogle Scholar
  63. Skórska, E., Szwarc, W.: Influence of UV-B radiation on young triticale plants with different wax cover. — Biol. Plant. 51: 189–192, 2007.CrossRefGoogle Scholar
  64. Slinkard, K., Singleton, V.A.: Total phenol analysis: automation and comparison with manual methods. — Amer. J. Enol. Viticult. 28: 29–55, 1977.Google Scholar
  65. Sobrino, C., Neale, P.J., Montero, O., Lubián, L.M.: Biological weighting function for xanthophylls de-epoxidation induced by ultraviolet radiation. — Physiol. Plant. 125: 41–51, 2005.CrossRefGoogle Scholar
  66. Stratmann, J.: Ultraviolet-B radiation co-opts defense signaling pathways. — Trends Plant Sci. 8: 526–533, 2003.CrossRefPubMedGoogle Scholar
  67. Takshak, S., Agrawal, S.B.: Effect of ultraviolet-B radiation on biomass production, lipid peroxidation, reactive oxygen species, and antioxidants in Withania somnifera. — Biol. Plant. 58: 328–334, 2014.CrossRefGoogle Scholar
  68. Tattini, M., Guidi, M.L., Morassi-Bonzi, L., Pinelli, P., Remorini, D., Degl’Innocenti, E., Giordano, C., Massai, R., Agati, G.: On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. — New Phytol. 167: 457–470, 2005.CrossRefPubMedGoogle Scholar
  69. Teklemariam, T., Blake, T.J.: Effects of UV-B preconditioning on heat tolerance of cucumber (Cucumis sativus L). — Environ. exp. Bot. 50: 169–182, 2003.CrossRefGoogle Scholar
  70. Teramura, A.H., Sullivan, J.H.: Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. — Photosynth. Res. 39: 463–473, 1994.CrossRefPubMedGoogle Scholar
  71. Trošt, T., Gaberšcik, A.: The effects of enhanced UV-B radiation on physiological activity and growth of Norway spruce planted outdoors over 5 years. — Trees 22: 423–435, 2008.CrossRefGoogle Scholar
  72. Turunen, M., Latola, K.: UV-B radiation and acclimation in timberline plants. — Environ. Pollut. 137: 390–403, 2005.CrossRefPubMedGoogle Scholar
  73. Wang, S., Duan, L., Eneji, A.E., Li, Z.: Variations in growth, photosynthesis and defense system among four weed species under increased UV-B radiation. — J. Integr. Plant Biol. 49: 621–627, 2007.CrossRefGoogle Scholar
  74. Wang, X., Gao, W., Slusser, J.R., Davis, J., Olson, B., Janssen, S., Janson, G., Durham, B., Tree, R., Deike, R.: USDA UV-B monitoring system: An application of centralized architecture. — Comput. Electron. Agr. 64: 326–332, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Reyes-Díaz
    • 1
    • 2
  • C. Meriño-Gergichevich
    • 2
  • C. Inostroza-Blancheteau
    • 3
  • M. Latsague
    • 4
  • P. Acevedo
    • 5
    • 6
  • M. Alberdi
    • 1
    • 2
  1. 1.Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y CienciasUniversidad de La FronteraTemucoChile
  2. 2.Centro Interacción Planta-Suelo y Biotecnología de Recursos Naturales, Núcleo Científico y Tecnológico de los BiorecursosUniversidad de La FronteraTemucoChile
  3. 3.Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Escuela de AgronomíaUniversidad Católica de TemucoTemucoChile
  4. 4.Escuela de Ciencias Ambientales, Facultad de Recursos NaturalesUniversidad Católica de TemucoTemucoChile
  5. 5.Departamento de Ciencias Físicas, Facultad de Ingeniería y CienciasUniversidad de La FronteraTemucoChile
  6. 6.Centro de Optica y FotónicaUniversidad de ConcepciónCasilla, ConcepciónChile

Personalised recommendations