Biologia Plantarum

, Volume 60, Issue 2, pp 235–243 | Cite as

Characterization and expression analysis of histone deacetylases family RPD3/HDA1 in Populus trichocarpa

Original papers


Histone deacetylases (HDACs) catalyze histone deacetylation and play an important role in suppression of gene transcription in multiple cellular processes. HDACs are widely distributed in eukaryotes, however, detailed characterrization of HDACs in woody plants is not available. In this study, the sequences of reduced potassium dependency 3/histone deacetylase 1 (RPD3/HDA1) family proteins in black cottonwood (Populus trichocarpa Torr. & A. Gray) were characterized and their expression patterns in response to cold and salt stresses were determined. The RPD3/HDA1 proteins had conserved HDAC domains and can be divided into three classes based on sequence similarity and phylogenetic analysis. The transcripts of the HDAC genes were detected in different amounts in leaves, stems, and roots. The expressions of HDAC genes HDA902, HDA903, HDA904, HDA909, and HDA912 were up-regulated in a cold stress. Interestingly, in a salt stress, most of the HDAC genes were down-regulated. These results indicate that the poplar HDAC genes were regulated by the cold and salt stresses, and the members of the RPD3/HDA1 family play a role in stress responses.

Additional key words

black cottonwood cold gene expression salinity 



18S rRNA


abscisic acid


histone acetyltransferase


histone deacetylase 1


histone deacetylase


molecular evolutionary genetic analysis


National Center for Biotechnology Information


open reading frame


reduced potassium dependency 3


polymerase chain reaction


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2015_579_MOESM1_ESM.pdf (727 kb)
Supplementary material, approximately 695 KB.


  1. Alinsug, M.V., Yu, C.W., Wu, K.: Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. — BMC Plant Biol. 9: 37, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chen, L.T., Luo, M., Wang, Y.Y., Wu, K.: Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. — J. exp. Bot. 61: 3345–3353, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chen, L.T., Wu, K.: Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. — Plant Signal Behav. 5: 1318–1320, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Hassig, C.A., Tong, J.K., Fleischer, T.C., Owa, T., Grable, P.G., Ayer, D.E., Schreiber, S.L.: A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. — Proc. nat. Acad. Sci. USA 95: 3519–3524, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hollender, C., Liu, Z.: Histone deacetylase genes in Arabidopsis development. — J. integr. Plant Biol. 50: 875–885, 2008.CrossRefPubMedGoogle Scholar
  6. Hu, Y., Qin, F., Huang, L., Sun, Q., Li, C., Zhao, Y., Zhou, D.X.: Rice histone deacetylase genes display specific expression patterns and developmental functions. — Biochem. biophys. Res. Commun. 388: 266–271, 2009.CrossRefPubMedGoogle Scholar
  7. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. — Methods 25: 402–408, 2001.CrossRefPubMedGoogle Scholar
  8. Ma, X., Lü, S., Zhang, C., Yang, C.: Histone deacetylases and their functions in plants. — Plant Cell Rep. 32: 465–478, 2013.CrossRefPubMedGoogle Scholar
  9. Nicholas, K.B., Nicholas, H.B., Jr.: GeneDoc: a tool for editing and annotating multiple sequence alignments. - Software distributed by the authors, 1997.Google Scholar
  10. Pandey, R., Muller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., Jorgensen, R.A.: Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. — Nucl. Acids Res. 30: 5036–5055, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Rossi, V., Locatelli, S., Varotto, S., Donn, G., Pirona, R., Henderson, D.A., Hartings, H., Motto, M.: Maize histone deacetylase hda101 is involved in plant development, gene transcription, and sequence-specific modulation of histone modification of genes and repeats. — Plant Cell 19: 1145–1162, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. — Mol. Biol. Evolut. 28: 2731–2739, 2011.CrossRefGoogle Scholar
  13. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G.: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. — Nucl. Acids Res. 25: 4876–4882, 1997.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. — Nucl. Acids Res. 22: 4673–4680, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  15. To, T.K., Nakaminami, K., Kim, J.M., Morosawa, T., Ishida, J., Tanaka, M., Yokoyama, S., Shinozaki, K., Seki, M.: Arabidopsis HDA6 is required for freezing tolerance. — Biochem. biophys. Res. Commun. 406: 414–419, 2011.CrossRefPubMedGoogle Scholar
  16. Xu, C.R., Liu, C., Wang, Y.L., Li, L.C., Chen, W.Q., Xu, Z.H., Bai, S.N.: Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis. — Proc. nat. Acad. Sci. USA 102: 14469–14474, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Zhu, J., Jeong, J.C., Zhu, Y., Sokolchik, I., Miyazaki, S., Zhu, J.K., Hasegawa, P.M., Bohnert, H.J., Shi, H., Yun, D.J., Bressan, R.A.: Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. — Proc. nat. Acad. Sci. USA 105: 4945–4950, 2008.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Tree Genetics and Breeding, School of ForestryNortheast Forestry UniversityHarbinP.R. China

Personalised recommendations