Advertisement

Biologia Plantarum

, Volume 59, Issue 4, pp 609–619 | Cite as

Proline: a key player in plant abiotic stress tolerance

  • G. Kaur
  • B. Asthir
Reviews

Abstract

Dramatic accumulation of proline is a common physiological response in plants exposed to various abiotic stresses. Accumulation of proline could be due to de novo synthesis, decreased degradation, lower utilization, or hydrolysis of proteins. Extensive intercellular proline transport occurs between the cytosol, chloroplasts, and mitochondria due to its compartmentalized metabolism. Although all functions of proline in stress tolerance are still a matter of debate, it is suggested that proline contributes to stabilization of sub-cellular structures, scavenging free radicals, and buffering cellular redox potential. It also chelates heavy metals, modulates cellular functions, and even triggers gene expression. Apparently, proline acts as stress-related signal exhibiting cross tolerance to a range of different stresses. Besides these significant roles, its metabolism is found to be coupled to several key pathways such as pentose phosphate, tricarboxylic acid, or urea cycles and contributes to, i.e., purine synthesis and the phenylpropanoid pathway. Although the molecular basis of regulation of proline metabolism is still largely obscure, the genetic engineering of proline content could lead to new opportunities to achieve plant stress tolerance.

Additional key words

cross tolerance free radicals glutamate ornithine pentose phosphate pathway proline metabolism 

Abbreviations

ABA

abscisic acid

APX

ascorbate peroxidase

CAT

catalase

GR

glutathione reductase

GSA

glutamate semialdehyde

H2O2

hydrogen peroxide

O2

superoxide

OH·

hydroxyl radical

OAT

ornithine aminotransferase

PPP

pentose phosphate pathway

P5C

pyrroline-5-carboxylate

P5CDH

P5C dehydrogenase

P5CS

pyrroline-5-carboxylate synthetase

P5CR

P5C reductase

PDH

proline dehydrogenase

POX

proline oxidase

PP

pentose pathway

ROS

reactive oxygen species

SA

salicylic acid

SOD

superoxide dismutase

TCA

tricarboxylic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, M., Sharma, S., Kaur, N., Pathania, D., Bhandhari, K., Kaushal, Kaur, N., Singh, R.K., Srivastava, A., Nayyar, H.: Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. — Biol. Trace Element Res. 140: 354–367, 2011.CrossRefGoogle Scholar
  2. Ahmed, C.B., Rouina, B.B., Sensoy, S., Boukhriss, M., Abdullah, F.B.: Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. — J. Agr. Food Chem. 58: 4216–4222, 2010.CrossRefGoogle Scholar
  3. Alcazar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P., Tiburcio, A.F.: Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. — Planta 231: 1237–1249, 2010.PubMedCrossRefGoogle Scholar
  4. Alia, Mohanty, P., Matysik, J.: Effect of proline on the production of singlet oxygen. — Amino Acids 21: 195–200, 2001.PubMedCrossRefGoogle Scholar
  5. Araújo, W.L., Trofimova, L., Mkrtchyan, G., Steinhauser, D., Krall, L., Graf, A.: On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism. — Amino Acids 44: 683–700, 2013.PubMedCrossRefGoogle Scholar
  6. Arora, S., Saradhi, P.P.: Light induced enhancement in proline levels under stress is regulated by non-photosynthetic events. — Biol. Plant. 45: 629–632, 2002.CrossRefGoogle Scholar
  7. Beak, K.H., Skinner, D.Z.: Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. — Plant Sci. 165: 1221–1227, 2003.CrossRefGoogle Scholar
  8. Chaitanya, K.V., Rasineni, G.K., Reddy, A.R.: Biochemical responses to drought stress in mulberry (Morus alba L.): Evaluation of proline, glycine betaine and abscisic acid accumulation in five cultivars. — Acta Physiol. Plant. 31: 437–443, 2009.CrossRefGoogle Scholar
  9. Chinnusamy, V., Jagendorf, A., Zhu, J.K.: Understanding and improving salt tolerance in plants. — Crop Sci. 45: 437–448, 2005.CrossRefGoogle Scholar
  10. De Campos, M.K.F., De Carvalho, K., De Souza, F.S., Marur, C.J., Pereira, L.F.P., Filho, J.C.B., Vieira, L.G.E.: Drought tolerance and antioxidant enzymatic activity in transgenic ’swingle’ citrumelo plants over-accumulating proline. — Environ. exp. Bot. 72: 242–250, 2011.CrossRefGoogle Scholar
  11. De Carvalho, K., De Campos, M.K.F., Domingues, D.S., Pereira, L.F.P., Vieira, L.G.E.: The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. — Mol. Biol. Rep. 40: 3269–3279, 2013.PubMedCrossRefGoogle Scholar
  12. Delauney, A.J., Verma, D.P.S.: Proline biosynthesis and osmoregulation in plants. — Plant J. 4: 215–223, 1993.CrossRefGoogle Scholar
  13. De Ronde, J.A., Cress, W.A., Krüger, G.H., Strasser, R.J., Van, S.J.: Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. — J. Plant Physiol. 161: 1211–1224, 2004.PubMedCrossRefGoogle Scholar
  14. Desikan, R., Neill, S.J., Hancock, J.T.: Hydrogen peroxideinduced gene expression in Arabidopsis thaliana. — Free Radicals Biol. Med. 28: 773–778, 2000.CrossRefGoogle Scholar
  15. Deuschle, K., Funck, D., Forlani, G., Stransky, H., Biehl, A., Leister, D., Graaff, E., Kunze, R., Frommer, W.B.: The role of [δ]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. — Plant Cell 16: 3413–3425, 2004.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Emamverdian, A., Ding, Y., Mokhberdoran, F., Xie1, Y.: Heavy metal stress and some mechanisms of plant defense response. — Sci. World J. 2015: 1–18, 2015.CrossRefGoogle Scholar
  17. Fabro, G., Kovács, I., Pavet, V., Szabados, L., Alvarez, M.E.: Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. — Mol. Plant Microbe Interact. 17: 343–350, 2004.PubMedCrossRefGoogle Scholar
  18. Filippou, P., Bouchagier, P., Skotti, E., Fotopoulos, V.: Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. — Environ. exp. Bot. 97: 1–10, 2014.CrossRefGoogle Scholar
  19. Fujita, T., Maggio, A., Garcia-Rios, M., Bressan, R.A., Csonka, L.N.: Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes delta for δ-pyrroline-5-carboxylate synthase from tomato. — Plant Physiol. 118: 661–674, 1998.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Funck, D., Stadelhofer, B., Koch, W.: Ornithine-deltaaminotransferase is essential for arginine catabolism but not for proline biosynthesis. — BMC Plant Biol. 8: 40, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Ghars, M.A., Richard, L., Lefebvre-De Vos, D., Leprince, A.S., Parre, E., Bordenave, M., Abdelly, C., Savoure, A.: Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stres. — Plant Cell Physiol. 53: 183–192, 2012.PubMedCrossRefGoogle Scholar
  22. Grallath, S., Weimar, T., Meyer, A., Gumy, C., Suter-Grotemeyer, M., Neuhaus, J.M., Rentsch, D.: The AtProT family: compatible solute transporters with similar substrate specificity but differential expression patterns. — Plant Physiol. 137: 117–126, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., Korff, M., Varshney, R.K., Graner, A., Valkoun, J.: Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. — J. exp. Bot. 60: 3531–3544, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hanson, J., Hanssen, M., Wiese, A., Hendriks, M.M.W.B., Smeekens, S.: The sucrose regulated transcription factor bZIPII affects amino acid metabolism by regulating the expression of asparagine synthetase and proline dehydrogenase. — Plant J. 53: 935–949, 2008.PubMedCrossRefGoogle Scholar
  25. Hare, P.D., Cress, W.A.: Metabolic implications of stressinduced proline accumulation in plants. — Plant Growth Regul. 21: 79–102, 1997.CrossRefGoogle Scholar
  26. Hare, P.D., Cress, W.A., Van, S.J.: Dissecting the roles of osmolyte accumulation during stress. — Plant Cell Environ. 21: 535–553, 1998.CrossRefGoogle Scholar
  27. Hayashi, F., Ichino, T., Osanai, M., Wada, K.: Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light dark cycles in Arabidopsis thaliana L. — Plant Cell Physiol. 41: 1096–1101, 2000.PubMedCrossRefGoogle Scholar
  28. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A.: Role of proline under changing environments. — Plant Signal. Behav. 7: 1456–1466, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hebbelmann, I., Selinski, J., Wehmeyer, C., Goss, T., Voss, I., Mulo, P., Kangasjärvi, S., Aro, E.M., Oelze, M.L., Dietz, K.J., Adriano, N.N., Do, P.T., Fernie, A.R., Sai, K.T., Raghavendra, A.S., Linke, V., Scheibe, R.: Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. — J. exp. Bot. 63: 1445–1459, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Hoque, M.A., Banu, M.N.A., Okuma, E., Amako, K., Nakamura, Y., Shimoishi, Y.: Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco bright yellow-2 suspension-cultured cells. — J. Plant Physiol. 164: 1457–1468, 2007a.PubMedCrossRefGoogle Scholar
  31. Hoque, M.A.O.E., Banu, M.N.A., Nakamura, Y., Shimoishi, Y., Murata, Y.: Exogenous proline mitigates the detrimental effects of salt stress more than the betaine by increasing antioxidant enzyme activities. — J. Plant Physiol. 164: 553–561, 2007b.PubMedCrossRefGoogle Scholar
  32. Hu, C.A., Delauney, A.J., Verma, D.P.: A bifunctional enzyme (δ 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. — Proc. nat. Acad. Sci. USA 89: 9354–9358, 1992.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hur, J., Jung, K.H., Lee, C.H., An, G.: Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. — Plant Sci. 167: 417–426, 2004.CrossRefGoogle Scholar
  34. Ignatova, Z., Gierasch, L.M.: Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. — Proc. nat. Acad. Sci. USA 103: 13357–13361, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Joseph, E.A., Radhakrishnan, V.V., Mohanan, K.V.: A study on the accumulation of proline — an osmoprotectant amino acid under salt stress in some native rice cultivars of North Kerala, India. — Univ. J. agr. Res. 3: 15–22, 2015.Google Scholar
  36. Kamran, M., Shahbaz, M., Ashraf, M., Akram, N.A.: Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. — Pak. J. Bot. 41: 621–632, 2009.Google Scholar
  37. Kanade, M.: Effect of foliar application of salicylic acid on polyphenol, proline and carbohydrates content in wheat and sorghum. — Adv. Plant Sci. 21: 321–322, 2008.Google Scholar
  38. Karthikeyan, A., Pandian, S. K., Ramesh, M.: Transgenic indica rice cv. ADT 43 expressing a 1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. — Plant Cell Tissue Organ Cult. 107: 383–395, 2011.CrossRefGoogle Scholar
  39. Kaul, S., Sharma, S.S., Mehta, I.K.: Free radical scavenging potential of L-proline: evidence from in vitro assays. — Amino Acids 34: 315–320, 2008.PubMedCrossRefGoogle Scholar
  40. Kaushal, N., Gupta, K., Bhandhari, K., Kumar, S., Thakur, P., Nayyar, H.: Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. — Physiol. mol. Biol. Plants 17: 203–213, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Khedr, A.H., Abbas, M.A., Wahid, A.A., Quick, W.P., Abogadallah, G.M.: Proline induces the expression of saltstress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. — J. exp. Bot. 54: 2553–2562, 2003.PubMedCrossRefGoogle Scholar
  42. Kiran, U., Abdin, M.Z.: Computational predictions of common transcription factor binding sites on the genes of proline metabolism in plants. — Bioinformation 8: 886–890, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Kishor, P., Hong, Z., Miao, G.H., Hu, C., Verma, D.: Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. — Plant Physiol. 108: 1387–1394, 1995.PubMedCentralPubMedGoogle Scholar
  44. Kishor, P.B.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N.P.B.: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. — Curr. Sci. 88: 424–438, 2005.Google Scholar
  45. Krishna, G., Reddy, P.S., Ramteke, P.W., Rambabu, P., Tawar, K.B., Bhattacharya, P.: Agrobacterium-mediated genetic transformation of pigeonpea (Cajanus cajan (L.) Millsp.) for resistance to legume pod borer Helicoverpa armigera. — J. Crop Sci. Biotechnol. 14: 197–204, 2011.CrossRefGoogle Scholar
  46. Kumar, V., Shriram, V., Kavi Kishor, P.B., Jawali, N., Shitole, M.G.: Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. — Plant Biotechnol. Rep. 4: 37–48, 2010.CrossRefGoogle Scholar
  47. Larher, F., Leport, L., Petrivalsky, M., Chappart, M.: Effectors for the osmoinduced proline response in higher plants. — Plant Physiol. Biochem. 31: 911–922, 1993.Google Scholar
  48. Lehmann, S., Gumy, C., Blatter, E., Boeffel S., Fricke, W., Rentsch, D.: In planta function of compatible solute transporters of the AtProT family. — J. exp. Bot. 62: 787–796, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Lopez, A.O., Chang, H.C., Bush, D.R.: Amino acid transporters in plants. — Biochem. biophys. Acta 1465: 275–280, 2000.CrossRefGoogle Scholar
  50. Mani, S., Van de Cotte, B., Van Montagu, M., Verbruggen, N.: Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. — Plant Physiol. 128: 73–83, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Martino, C.D., Pizzuto, R., Pallotta, M.L., Santis, A.D., Passarella, S.: Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. — Planta 223: 1123–1133, 2006.PubMedCrossRefGoogle Scholar
  52. Masoud, Z., Arash, A., Shorangiz, J.: Proline metabolite transport an efficient approach in corn yield improvement as response to drought conditions. — J. Agr. environ. Sci. 13: 1632–1641, 2013.Google Scholar
  53. Mattioli, R., Marchese, D., D’Angeli, S., Altamura, M.M., Costantino, P., Trovato, M.: Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. — Plant mol. Biol. 66: 277–288, 2008.PubMedCrossRefGoogle Scholar
  54. Matysik, J., Alia, Bhalu, B., Mohanty, P.: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plans. — Curr. Sci. 82: 525–532, 2002.Google Scholar
  55. Miller, G., Honig, A., Stein, H., Suzuki, N., Mittler, R., Zilberstein, A.: Unraveling delta 1-pyrroline-5-carboxylate proline cycle in plants by uncoupled expression of proline oxidation enzymes. — J. biol. Chem. 284: 26482–26492, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Misra, N., Saxena, P.: Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. — Plant Sci. 177: 181–189, 2009.CrossRefGoogle Scholar
  57. Molinari, H.B., Marur, C.J., Filho, J.C., Kobayashi, A.K., Pileggi, M., Júnior, R.P., Pereira, L.F., Vieira, L.G.: Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducing proline. — Plant Sci. 167: 1375–1381, 2004.CrossRefGoogle Scholar
  58. Molla, M.R., Ali, M.R., Hasanuzzaman, M., Al-Mamun, M.H., Ahmed, A., Nazim-Ud-Dowla, M.A.N., Rohman, M.M.: Exogenous proline and betaine-induced upregulation of glutathione transferase and glyoxalase I in lentil (Lens culinaris) under drought stress. — Not. Bot. Hort. Agrobot. 42: 73–80, 2014.Google Scholar
  59. Murahama, M., Yoshida, T., Hayashi, F., Ichino, T., Sanada, Y., Wada, K.: Purification and characterization of δ1-pyrroline-5-carboxylate reductase isoenzymes, indicating differential distribution in spinach (Spinacia oleracea L.) leaves. — Plant Cell Physiol. 42: 742–750, 2001.PubMedCrossRefGoogle Scholar
  60. Nakashima, K., Satoh, R., Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K.: A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. — Plant Physiol. 118: 1233–1241, 1998.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. — FEBS. Lett. 461: 205–210, 1999.PubMedCrossRefGoogle Scholar
  62. Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T.: Hydrogen peroxide and nitric oxide as signalling molecules in plants. — J. exp. Bot. 53: 1237–1242, 2002.PubMedCrossRefGoogle Scholar
  63. Oono, Y., Ooura, C., Rahman, A., Aspuria, E.T., Hayashi, K., Tanaka, A., Uchimiya, H.: p-clorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. — Plant Physiol. 133: 1135–1147, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Palmieri, L., Todd, C.D., Arrigoni, R., Hoyos, M. E., Santoro, A., Polacco, J.C., Palmieri, F.: Arabidopsis mitochondria have two basic amino acid transporters with partially overlapping specificities and differential expression in seedling development. — Biochem. biophys. Acta 1757: 1277–1283, 2006.PubMedGoogle Scholar
  65. Parre, E., Ghars, M.A., Leprince, A.S., Thiery, L., Lefebvre, D., Bordenave, M., Richard, L., Mazars, C., Abdelly, C., Savouré, A.: Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. — Plant Physiol. 144: 503–512, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Patade, V.Y., Lokhande, V.H., Suprasanna, P.: Exogenous application of proline alleviates salt induced oxidative stress more efficiently than glycine betaine in sugarcane cultured cells. — Sugar Technol. 16: 22–29, 2014.CrossRefGoogle Scholar
  67. Prasad, V., Satyavathi, V.V., Sanjaya, Valli K.M., Khandelwal A., Shaila, M.S., Sita, G.L.: Expression of biologically active hemagglutinin-neuraminidase protein 4 of peste des petits ruminants virus in transgenic pigeon pea (Cajanus cajan (L.) Millsp.). — Plant Sci. 166: 199–205, 2004.CrossRefGoogle Scholar
  68. Rejeb, K.B., Abdelly, C., Savouré, A.: How reactive oxygen species and proline face stress together. — Plant Physiol. Biochem. 80: 278–284, 2014.PubMedCrossRefGoogle Scholar
  69. Ribarits, A., Abdullaev, A., Tashpulatov, A., Richter, A., Heberle-Bors, E., Touraev, A.: Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. — Planta 225: 1313–1324, 2007.PubMedCrossRefGoogle Scholar
  70. Rocha, I.M.A., Vitorello, V.A., Silva, J.S., Ferreira-Silva, S.L., Viégas, R.A., Silva, E.N., Silveira, J.A.G.: Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. — J. Plant Physiol. 169: 41–49, 2012.PubMedCrossRefGoogle Scholar
  71. Roosens, N.H., Al Bitar, F., Loenders, K., Angenon, G., Jacobs, M.: Overexpression of ornithine-delta-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. — Mol. Breed. 9: 73–80, 2002.CrossRefGoogle Scholar
  72. Sánchez, E., López-Lefebre, L.R., García, P.C., Rivero, R.M., Ruiz, J.M., Romero, L.: Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). — J. Plant Physiol. 158: 593–598, 2001.CrossRefGoogle Scholar
  73. Sarkar, D., Bhowmika, P.C., Kwon, Y., Shetty, K.: The role of proline-associated pentose phosphate pathway in coolseason turfgrasses after UV-B exposure. — Environ. exp. Bot. 70: 251–258, 2011.CrossRefGoogle Scholar
  74. Satoh, R., Nakashima, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. — Plant Physiol. 130: 709–719, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Savouré, A., Jaoua, S., Hua, X.J., Ardiles, W., Van Montagu, M., Verbruggen, N.: Isolation, characterization, and chromosomal location of gene coding the delta-1-pyrrolinecarboxylate synthetase Arabidopsis thaliana. — FEBS Lett. 372: 13–19, 1995.PubMedCrossRefGoogle Scholar
  76. Sharma, S., Verslues, P.E.: Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. — Plant Cell Environ. 33: 1838–51, 2010.PubMedCrossRefGoogle Scholar
  77. Shetty, K.: OPPP and photosynthetic carbon reduction cycle provides carbon in the form of erythrose-4-phosphate, which together with phosphoenolpyruvate acts as a precursor for phenylalanine biosynthesis via the shikimic acid pathway. — Proc. Biochem. 39: 789–804, 2004.CrossRefGoogle Scholar
  78. Shetty, K.: Biotechnology to harness the benefits of dietary phenolics: focus on Lamiaceae. — Asia Pacific J. Clin. Nutr. 6: 162–171, 1997.Google Scholar
  79. Signorelli, S., Coitin, O, E.L., Borsani, O., Monza, J.: Molecular mechanisms for the reaction between -OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. — J. phys. Chem. 118: 37–47, 2014.CrossRefGoogle Scholar
  80. Signorelli, S., Arellano, J. B., Melo, T. B., Borsani, O., Monza, J.: Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. — Plant Physiol. Biochem. 64: 80–83, 2013.PubMedCrossRefGoogle Scholar
  81. Silva-Ortega, C.O., Ochoa-Alfaro, A.E., Reyes-Agüero, J.A., Aguado-Santacruz, G.A., Jiménez-Bremont, J.F.: Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear. — Plant Physiol. Biochem. 46: 82–92, 2008.PubMedCrossRefGoogle Scholar
  82. Sivakumar, P., Sharmila, P., Saradhi, P.P.: Proline alleviates salt-stress induced enhancement in ribulose-1,5-bisphosphate oxygenase activity. — Biochem. biophys. Res. Commun. 279: 512–515, 2000.PubMedCrossRefGoogle Scholar
  83. Smirnoff, N., Cumbes, Q.J.: Hydroxyl radical scavenging activity of compatible solutes. — Phytochemistry 28: 1057–1060, 1989.CrossRefGoogle Scholar
  84. Song, S.Q., Lei, Y.B., Tian, X.R.: Proline metabolism and cross tolerance to salinity and heat stress in geminating wheat seed. — Russ. J. Plant Physiol. 52: 897–904, 2005.CrossRefGoogle Scholar
  85. Spielbauer, G., Li, L., Römisch, M.L., Do, P.T., Fouquet, R., Fernie, A.R., Eisenreich, W., Gierl, A., Settles, A.M.: Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation. — J. exp. Bot. 1–12, 2013.Google Scholar
  86. Srinivas, V., Balasubramanian, D.: Proline is a proteincompatible hydrotrope. — Langmuir ai]11: 2830–2833, 1995.CrossRefGoogle Scholar
  87. Stein, H., Honig, A., Miller, G., Erster, O., Eilenberg, H., Csonka, L.N., Szabados, L., Koncz, C., Zilberstein, A.: Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. — Plant Sci. 181: 140–150, 2011.PubMedCrossRefGoogle Scholar
  88. Strizhov, N., Abraham, E., Okresz, L., Blickling, S., Zilberstein, A., Schell, J., Koncz, C., Szabados, L.: Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. — Plant J. 12: 557–569, 1997.PubMedCrossRefGoogle Scholar
  89. Su, M., Li, X.F., Ma, X.Y., Peng, X.J., Zhao, A.G., Cheng, L.Q., Chen, S.Y., Liu, G.S.: Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. — Plant Sci. 181: 652–659, 2011.PubMedCrossRefGoogle Scholar
  90. Szabados, L., Savoure, A.: Proline: a multifunctional amino acid. — Trends Plant Sci. 15: 1360–1385, 2009.Google Scholar
  91. Székely, G., Abraham, E., Cselo, A., Rigo, G., Zsigmond, L., Csiszar, J., Ayaydin, F., Strizhov, N., Jasik, J., Schmelzer, E., Koncz, C., Szabados, L.: Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. — Plant J. 53: 11–28, 2008.PubMedCrossRefGoogle Scholar
  92. Szoke, A., Miao, G.H., Hong, Z.L., Verma, D.P.S.: Subcellular location of Δ1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. — Plant Physiol. 99: 1642–1649, 1992.PubMedCentralPubMedCrossRefGoogle Scholar
  93. Taiz, L., Zeiger, E. (ed.): Plant Physiology. — Sinauer Associates, Sunderland 2010.Google Scholar
  94. Thiery, L., Leprince, A., Lefebvre, D., Ghars, M.A., Debarbieux, E., Savouré, A.: Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. — J. biol. Chem. 279: 14812–14818, 2004.PubMedCrossRefGoogle Scholar
  95. Usha, K., Malik, Z.A.: Computational predictions of common transcription factor binding sites on the genes of proline metabolism in plants. — Bioinformation 8: 886–890, 2012.CrossRefGoogle Scholar
  96. Verbruggen, N., Hermans, C.: Proline accumulation in plants: a review. — Amino Acids 35: 753–759, 2008.PubMedCrossRefGoogle Scholar
  97. Verslues, P.E., Bray, E.A.: Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential induced ABA and proline accumulation. — J. exp. Bot. 57: 201–212, 2006.PubMedCrossRefGoogle Scholar
  98. Verslues, P.E., Sharma, S.: Proline metabolism and its implications for plant-environment interaction. — Arabidopsis Book 8: 140, 2010.CrossRefGoogle Scholar
  99. Viehweger, K.: How plants cope with heavy metals. — Bot. Studies 55: 1–12, 2014.CrossRefGoogle Scholar
  100. Voetberg, G.S., Sharp, R.E.: Growth of the maize primary root at low water potentials. — Plant Physiol. 96: 1125–1130, 1991.PubMedCentralPubMedCrossRefGoogle Scholar
  101. Vogel, H.J., Davis, B.D.: Glutamic-γ-semialdehyde and δ′-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. — Amer. J. chem. Soc. 74: 109–112, 1952.CrossRefGoogle Scholar
  102. Waditee, R., Hibino, T., Tanaka, Y., Nakamura, T., Incharoensakdi, A., Hayakawa, S., Suzuki, S., Futsuhara, Y., Kawamitsu, Y., Takabe, T.: Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. — J. biol. Chem. 277: 18373–18382, 2002.PubMedCrossRefGoogle Scholar
  103. Weltmeier, F., Ehlert, A., Mayer, C.S., Dietrich, K., Wang, X., Schiitze, K., Alonso, R., Harter, K., Vicente-Carbajosa, J., Droge-Laser, W.: Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. — EMBO J. 25: 3133–3143, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  104. Woo, S.Y., Lee, D.K., Lee, Y.K.: Net photosynthetic rate, ascorbate peroxidase and glutathione reductase activities of Erythrina orientalis in polluted and non-polluted areas. — Photosynthetica 45: 293–295, 2007.CrossRefGoogle Scholar
  105. Wu, L.Q., Fan, Z.M., Guo, L., Li, Y.Q., Zhang, W.J., Qu, L.J., Chen, Z.L.: Over-expression of an Arabidopsis delta-OAT gene enhances salt and drought tolerance in transgenic rice. — Chin. Sci. Bull. 48: 2594–2600, 2003.CrossRefGoogle Scholar
  106. Xu, J., Yin, H.X., Li, X.: Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. — Plant Cell Rep. 28: 325–333, 2009.PubMedCrossRefGoogle Scholar
  107. Xue, X., Liu, A., Hua, X.: Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus. — BMB Rep. 42: 28–34, 2009.PubMedCrossRefGoogle Scholar
  108. Yang, L.A., Ji, W., Zhu, Y.M., Gao, P., Li, Y., Cai, H., Bai, X., Guo, D.J.: GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. — J. exp. Bot. 61: 2519–2533, 2010.PubMedCrossRefGoogle Scholar
  109. Yan, Z., Guo, S., Shu, S., Sun, J., Tezuka, T.: Effects of proline on photosynthesis, root reactive oxygen species (ROS) metabolism in two melon cultivars (Cucumis melo L.) under NaCl stress. — Afr. J. Biotechnol. 10: 18381–18390, 2011.CrossRefGoogle Scholar
  110. Yu, C., Claybrook, D.L., Huang, A.H.: Transport of glycine, serine, and proline into spinach leaf mitochondria. — Arch. Biochem. Biophys. 227: 180–187, 1983.PubMedCrossRefGoogle Scholar
  111. Yusuf, M., Syed, A.H., Barket, A., Shamsul, H., Qazi, F., Aqil, A.: Effect of salicylic acid on salinity-induced changes in Brassica juncea. — J. Integr. Plant BioI. 50: 1096–1102, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of BiochemistryPunjab Agricultural UniversityLudhianaIndia

Personalised recommendations