Advertisement

Biologia Plantarum

, Volume 59, Issue 4, pp 767–772 | Cite as

Actinidia kolomikta leaf colour and optical characteristics

  • Z. -X. Wang
  • S. -T. Fan
  • L. Chen
  • Y. Zhao
  • Y. -M. Yang
  • J. Ai
  • X. -Y. Li
  • Y. -X. Liu
  • H. -Y. Qin
Original Papers

Abstract

Actinidia kolomikta (Rupr. & Maxim.) Maxim. leaves showed dramatic colour changes during plant growth phases, and we studied structure and optical properties of variegated leaves. Leaf surface cells were smooth, and there were no surface appendages (wax or trichomes) observed in variegated leaves. Palisade tissue cells in white and pink leaves were looser and contained relatively fewer chloroplasts. White leaves contained many intercellular spaces between the epidermal and mesophyll cells or within the palisade cell layer. Variegated leaves had three distinct radiation reflection patterns: a bright white area, a spotted pattern, and a polygonal pattern. Reflectance at 450–1100 nm from the adaxial surface of white leaves was greater than that of green leaves, but anthocyanin accumulation in pink leaves decreased the reflectance at 500–600 nm. When variegated leaves turned green, the reflectance at 500–600 nm increased. On abaxial surfaces, the reflectance of variegated leaves was similar to green leaves at 450–700 nm. In conclusion, reflection patterns and the formation of variegated leaves of A. kolomikta were significantly correlated with the leaf anatomy. The white and pink colours of leaves were a result of an internal reflection between air spaces and cells in the leaves, chlorophyll deficiency in palisade tissue, and anthocyanin accumulation. Variegated leaves turned green when the chlorophyll content in palisade tissue increased.

Additional key words

anthocyanin chlorophyll leaf anatomy reflectance spectrum characteristics variegated leaves 

Abbreviations

A

absorbance

ARI

anthocyanin reflectance index

ChlNDI

chlorophyll normalized difference vegetation index

CRI

carotenoid reflectance index

PP

polygonal pattern

R

reflectance

SEM

scanning electron microscopy

SP

spotted pattern

T

transmittance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajgiran, P.R., Munehiro, M., Omasa, K.: Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages. — Photosynth. Res. 113: 261–271, 2012.CrossRefGoogle Scholar
  2. Blackburn, G.A.: Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. — Int. J. Remote Sensing 19: 657–675, 1998.CrossRefGoogle Scholar
  3. Esteban, R., Fernandez-Marin, B., Becerril, J.M., Garcia-Plazaola, J.I.: Photoprotective implications of leaf variegation in E. dens-canis L. and P. officinalis L. — J. Plant Physiol. 165: 1255–1263, 2008.CrossRefPubMedGoogle Scholar
  4. Fooshee, W.C., Henny, R.J.: Chlorophyll levels and anatomy of variegated and nonvariegated areas of Aglaonema nitidum leaves. — Proc. Florida State hort. Soc. 103: 170–172, 1990.Google Scholar
  5. Gitelson, A.A., Merzlyak, M.N.: Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. leaves: spectral features and relation to chlorophyll estimation. — J. Plant Physiol. 143: 286–292, 1994.CrossRefGoogle Scholar
  6. Gitelson, A.A., Merzlyak, M.N., Chivkunova, O.B.: Optical properties and nondestructive estimation of anthocyanin content in plant leaves. — Photochem. Photobiol. 71: 38–45, 2001.CrossRefGoogle Scholar
  7. Gitelson, A.A., Zur, Y., Chivkunova, O.B., Merzlyak, M.N.: Assessing carotenoid content in plant leaves with reflectance spectroscopy. — Photochem. Photobiol. 75: 272–281, 2002.CrossRefPubMedGoogle Scholar
  8. Glover, B.J., Martin, C.: The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. — Heredity 80: 778–784, 1998.CrossRefGoogle Scholar
  9. Gould, K.S., Markham, K.R., Smith, R.H., Goris, J.J.: Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. — J. exp. Bot. 51: 1107–1115, 2000.CrossRefPubMedGoogle Scholar
  10. Karabourniotis, G., Bornman, J.F., Liakoura, V.: Different leaf surface characteristics of three grape cultivars affect leaf optical properties as measured with fibre optics: possible implication in stress tolerance. — Aust. J. Plant Physiol. 26: 47–53, 1999.CrossRefGoogle Scholar
  11. Kasperbauer, M.J., Wilkinson, R.E.: Mulch surface color affects accumulation of epicuticular wax on developing leaves. — Photochem. Photobiol. 62: 940–944, 1995.CrossRefGoogle Scholar
  12. Knipling, E.B.: Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. — Remote Sensing Environ. 1: 155–159, 1970.CrossRefGoogle Scholar
  13. Konoplyova, A., Petropoulou, Y., Yiotis, C., Psaras, G.K., Manetas, Y.: The fine structure and photosynthetic cost of structural leaf variegation. — Flora 203: 653–662, 2008.CrossRefGoogle Scholar
  14. Liakopoulos, G., Nikolopoulos, D., Klouvatou., A., Vekkos, K.A., Manetas, Y., Karabourniotis, G.: The Photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera). — Ann. Bot. 98: 257–265, 2006.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Merzlyak, M.N., Chivkunova, O.B., Solovchenko, A.E., Naqvi, K.R.: Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. — J. exp. Bot. 59: 3903–3911, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Neill, S., Gould, K.S.: Optical properties of leaves in relation to anthocyanin concentration and distribution. — Can. J. Bot. 77: 1777–1782, 1999.CrossRefGoogle Scholar
  17. Peñuelas, J., Filella, I.: Visible and near-infrared reflectance techniques for diagnosing plant physiological status. — Trends Plant Sci. 3: 151–155, 1998.CrossRefGoogle Scholar
  18. Peñuelas, J., Isla, R., Filella, I., Araus, J.L.: Visible and nearinfrared reflectance assessment of salinity effects on barley. — Crop Sci. 37: 198–202, 1997.CrossRefGoogle Scholar
  19. Ranjan, S., Singh, R., Singh, M., Pathre, U.V., Shirke, P.A.: Characterizing photoinhibition and photosynthesis in juvenile-red versus mature-green leaves of Jatropha curcas L. — Plant Physiol. Biochem. 79: 48–59, 2014.CrossRefPubMedGoogle Scholar
  20. Reicosky, D.A., Hanover, J.W.: Physiological effects of surface waxes. — Plant Physiol. 62: 101–104, 1978.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Rocca, N.L., Rascio, N., Pupillo, P.: Variegation in Arum italicum leaves. A structural and functional study. — Plant Physiol. Biochem. 49: 1392–1398, 2011.CrossRefPubMedGoogle Scholar
  22. Sakamoto, W., Uno, Y., Zhang, Q., Miura, E., Kato, Y., Sodmergen: Arrested differentiation of proplastids into chloroplasts in variegated leaves characterized by plastid ultrastructure and nucleoid morphology. — Plant Cell Physiol. 50: 2069–2083, 2009.CrossRefPubMedGoogle Scholar
  23. Sheue, C.R., Pao, S.H., Chien, L.F., Chesson, P., Peng, C.I.: Natural foliar variegation without costs? The case of Begonia. — Ann. Bot. 109: 1065–1074, 2012.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Sims, D.A., Gamon, J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. — Remote Sensing Environ. 81: 337–354, 2002.CrossRefGoogle Scholar
  25. Slaton M.R., Hunt E.R., Smith W.K.: Estimating near-infrared leaf reflectance from leaf structural characteristics. — Amer. J. Bot. 88: 278–284, 2001.CrossRefGoogle Scholar
  26. Tsukaya, H., Okada, H., Mohamed, M.: A novel feature of structural variegation in leaves of the tropical plant Schismatoglottis calyptrata. — J. Plant Res. 117: 477–480, 2004.CrossRefPubMedGoogle Scholar
  27. Užarević, Z., Štolfa, I., ParaĐiković, N., Cesar, V., Lepeduš, H.: Physiology and biochemistry of leaf bleaching in prematurely aging maple (Acer saccharinum L.) trees: I. Hydrogen peroxide level, antioxidative responses and photosynthetic pigments. — Acta bot. croatica 70: 121–132, 2011.Google Scholar
  28. Yu, F., Fu, A.G., Aluru, M., Park, S., Xu, Y., Liu, H.Y., Liu, X.Y., Foudree, A., Nambogga, M., Rodermel, S.: Variegation mutants and mechanisms of chloroplast biogenesis. — Plant Cell Environ. 30: 350–365, 2007.CrossRefPubMedGoogle Scholar
  29. Zhang, Y., Hayashi, T., Hosokawa, M., Yazawa, S., Li, Y.H.: Metallic lustre and the optical mechanism generated from the leaf surface of Begonia rex Putz. — Sci. Hort. 121: 213–217, 2009.CrossRefGoogle Scholar
  30. Zeliou, K., Manetas, Y., Petropoulou, Y.: Transient winter leaf reddening in Cistus creticus characterizes weak (stress-sensitive) individuals, yet anthocyanins cannot alleviate the adverse effects on photosynthesis. — J. exp. Bot. 60: 3031–3042, 2009.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Z. -X. Wang
    • 1
  • S. -T. Fan
    • 1
  • L. Chen
    • 1
  • Y. Zhao
    • 1
  • Y. -M. Yang
    • 1
  • J. Ai
    • 1
  • X. -Y. Li
    • 1
  • Y. -X. Liu
    • 1
  • H. -Y. Qin
    • 1
  1. 1.Laboratory of Special Wild Plant Physiology, Institute of Special Wild Economic Animal and Plant ScienceChinese Academy of Agricultural SciencesChang’chunP.R. China

Personalised recommendations