Biologia Plantarum

, Volume 59, Issue 3, pp 401–412 | Cite as

Translation initiation in plants: roles and implications beyond protein synthesis

  • S. Dutt
  • J. Parkash
  • R. Mehra
  • N. Sharma
  • B. Singh
  • P. Raigond
  • A. Joshi
  • S. Chopra
  • B. P. Singh


Protein synthesis is a ubiquitous and essential process in all organisms, including plants. It is primarily regulated at translation initiation stage which is mediated through a number of translation initiation factors (eIFs). It is now becoming more apparent that in addition to synthesis of proteins, eIFs also regulate various aspects of plant development and their interaction with environment. Translation initiation factors, such as eIF3, eIF4A, eIF4E, eIF4G, and eIF5A affect different processes during vegetative and reproductive growth like embryogenesis, xylogenesis, flowering, sporogenesis, pollen germination, etc. On the contrary, eIF1A, eIF2, eIF4, and eIF5A are associated with interaction of plants with different abiotic stresses, such as high temperature, salinity, oxidative stress, etc. Similarly, eIF4E and eIF4G have roles in interaction with many viruses. Therefore, the translation initiation factors are important candidates for improving plant performance and adaptation. A large number of genes encoding eIFs can functionally be validated and utilized through genetic engineering approaches for better adaptability and performance of plants by inhibiting/minimizing or increasing expression of desired eIF(s).

Additional key words

embryogenesis germination high temperature oxidative stress salinity viral diseases water stress 



amino acid


cap-independent translation element




translation initiation factor


guanine nucleotide exchange factor




messenger RNA


open reading frame


poly(A)-binding protein


pre-initiation complex


peptidyl site


RNA recognition motif


initiator transfer RNA


untranslated region


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2015_517_MOESM1_ESM.pdf (237 kb)
Supplementary material, approximately 237 KB.


  1. Acker, M.G., Shin, B.S., Dever, T.E., Lorsch, J.R.: Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining. — J. biol. Chem. 281: 8469–8475, 2006.PubMedCrossRefGoogle Scholar
  2. Albar, L., Bangratz-Reyser, M., Hebrard, E., Ndjiondjop, M.N., Jones, M., Ghesquiere, A.: Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. — Plant J. 47: 417–426, 2006.PubMedCrossRefGoogle Scholar
  3. Boex-Fontvieille, E., Daventure, M., Jossier, M., Zivy, M., Hodges, M., Tcherkez, G.: Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation. — PLoS One 8: e70692, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Boisnard, A., Albar, L., Thiemele, D., Rondeau, M., Ghesquiere, A.: Evaluation of genes from eIF4E and eIF4G multigenic families as potential candidates for partial resistance QTLs to Rice yellow mottle virus in rice. — Theor. appl. Genet. 116: 53–62, 2007.PubMedCrossRefGoogle Scholar
  5. Browning, K,S.: Plant translation initiation factors: it is not easy to be green. — Biochem. Soc. Trans. 32: 589–591, 2004.PubMedCrossRefGoogle Scholar
  6. Byrne, E.H., Prosser, I., Muttucumaru, N., Curtis, T.Y., Wingler, A., Powers, S., Halford, N.G.: Overexpression of GCN2-type protein kinase in wheat has profound effects on free amino acid concentration and gene expression. — Plant Biotechnol. J. 10: 328–340, 2012.PubMedCrossRefGoogle Scholar
  7. Callot, C., Gallois, J.L.: Pyramiding resistances based on translation initiation factors in Arabidopsis is impaired by male gametophyte lethality. — Plant Signal Behav. 9: e27940, 2014.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen, Z., Jolley, B., Caldwell, C., Gallie, D.R.: Eukaryotic translation initiation factor eIFiso4G is required to regulate violaxanthin de-epoxidase expression in Arabidopsis. — J. biol Chem. 289: 13926–13936, 2014.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cheng, S., Gallie, D.R.: Competitive and noncompetitive binding of eIF4B, eIF4A, and the poly(A) binding protein to wheat translation initiation factor eIFiso4G. — Biochemistry 49: 8251–8265, 2010.PubMedCrossRefGoogle Scholar
  10. Cheng, S., Sultana, S., Goss, D.J., Gallie, D.R.: Translation initiation factor 4B homodimerization, RNA binding, and interaction with Poly(A)-binding protein are enhanced by zinc. — J. biol. Chem. 283: 36140–36153, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Choi, S.K., Olsen, D.S., Roll-Mecak, A., Martung, A., Remo, K.L., Burley, S.K., Hinnebusch, A.G., Dever, T.E.: Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. — Mol. cell. Biol. 20: 7183–7191, 2000.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Combe, J.P., Petracek, M.E., Van Eldik, G., Meulewaeter, F., Twell, D.: Translation initiation factors eIF4E and eIFiso4E are required for polysome formation and regulate plant growth in tobacco. — Plant mol. Biol. 57: 749–760, 2005.PubMedCrossRefGoogle Scholar
  13. Contreras-Paredes, C.A., Silva-Rosales, L., Daros, J.A., Alejandri-Ramirez, N.D., Dinkova, T.D.: The absence of eukaryotic initiation factor eIF(iso)4E affects the systemic spread of a Tobacco etch virus isolate in Arabidopsis thaliana. — Mol. Plant Microbe Interact. 26: 461–470, 2013.PubMedCrossRefGoogle Scholar
  14. Dever, T.E.: Gene-specific regulation by general translation factors. — Cell 108: 545–556, 2002.PubMedCrossRefGoogle Scholar
  15. Dever, T.E., Green, R.: The elongation, termination, and recycling phases of translation in eukaryotes. — Cold Spring Harb. Perspect. Biol. 4: a013706, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Duan, H., Richael, C., Rommens, C.M.: Overexpression of the wild potato eIF4E-1 variant Eva1 elicits Potato virus Y resistance in plants silenced for native eIF4E-1. — Transgenic Res. 21: 929–938, 2012.PubMedCrossRefGoogle Scholar
  17. Gallie, D.R., Browning, K.S.: eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. — J. biol. Chem. 276: 36951–36960, 2001.PubMedCrossRefGoogle Scholar
  18. German-Retana, S., Walter, J., Doublet, B., Roudet-Tavert, G., Nicaise, V., Lecampion, C., Houvenaghel, M.C., Robaglia, C., Michon, T., Le Gall, O.: Mutational analysis of plant cap-binding protein eIF4E reveals key amino acids involved in biochemical functions and potyvirus infection. — J. Virol. 82: 7601–7612, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Henderson, A., Hershey, J.W.: Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae. — Proc. nat. Acad. Sci. USA 108: 6415–6419, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hinnebusch, A.G.: Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. — In: Sonenberg, N., Hershey, J.W.B., Mathews, M.B. (ed.): Translational Control of Gene Expression. Pp 185–244. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 2000.Google Scholar
  21. Hinnebusch, A.G.: eIF3: a versatile scaffold for translation initiation complexes. — Trends Biochem. Sci. 31: 553–562, 2006.PubMedCrossRefGoogle Scholar
  22. Hopkins, M.T., Lampi, Y., Wang, T.W., Liu, Z., Thompson, J.E.: Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis. — Plant Physiol. 148: 479–489, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Huang, J., Wang, J., Qiu, S., Zhang, H.: Isolation and characterization of two cDNAs encoding translation initiation factor 1A from rice (Oryza sativa L.). — DNA Seq. 15: 39–43, 2004.PubMedCrossRefGoogle Scholar
  24. Hwang, J., Li, J., Liu, W.Y., An, S.J., Cho, H., Her, N.H., Yeam, I., Kim, D., Kang, B.C.: Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilli veinal mottle virus in pepper. — Mol. Cells 27: 329–336, 2009.PubMedCrossRefGoogle Scholar
  25. Jackson, R.J., Hellen, C.U., Pestova, T.V.: The mechanism of eukaryotic translation initiation and principles of its regulation. — Nat. Rev. mol. cell. Biol. 11: 113–127, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Jennings, M.D., Pavitt, G.D.: eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. — Nature 465: 378–381, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kim, M.I., Park, S.W., Yu, S.H., Cho, H.S., Ha, H.J., Hwang, I., Pai, H.S.: Molecular characterization of the NeIF2B beta gene encoding a putative eIF2B beta-subunit in Nicotiana tabacum. — Mol. Cells 11: 110–114, 2001.PubMedGoogle Scholar
  28. Kim, Y., Lee, G., Jeon, E., Sohn, E.J., Lee, Y., Kang, H., Lee, D.W., Kim, D.H., Hwang, I.: The immediate upstream region of the 5’-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. — Nucl. Acids Res. 42: 485–498, 2014.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kolupaeva, V.G., Unbehaun, A., Lomakin, I.B., Hellen, C.U., Pestova, T.V.: Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. — RNA 11: 470–486, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kraft, J.J., Treder, K., Peterson, M.S., Miller, W.A.: Cationdependent folding of 3’ cap-independent translation elements facilitates interaction of a 17-nucleotide conserved sequence with eIF4G. — Nucl. Acids Res. 41: 3398–3413, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lageix, S., Lanet, E., Pouch-Pelissier, M.N., Espagnol, M.C., Robaglia, C., Deragon, J.M., Pelissier, T.: Arabidopsis eIF2alpha kinase GCN2 is essential for growth in stress conditions and is activated by wounding. — BMC Plant Biol. 8: 134, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Lax, S., Fritz, W., Browning, K., Ravel, J.: Isolation and characterization of factors from wheat germ that exhibit eukaryotic initiation factor 4B activity and overcome 7-methylguanosine 5’-triphosphate inhibition of polypeptide synthesis. — Proc. nat. Acad. Sci. USA 82: 330–333, 1985.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lax, S.R., Lauer, S.J., Browning, K.S., Ravel, J.M.: Purification and properties of protein synthesis initiation and elongation factors from wheat germ. — Methods Enzymol. 118: 109–128, 1986.PubMedCrossRefGoogle Scholar
  34. Lax, S.R., Osterhout, J.J., Ravel, J.M.: Factors from wheat germ that enhance the activity of eukaryotic initiation factor eIF-2. Isolation and characterization of Co-eIF-2 beta. — J. biol. Chem. 257: 8233–8237, 1982.PubMedGoogle Scholar
  35. Lee, J.H., Muhsin, M., Atienza, G.A., Kwak, D.Y., Kim, S.M., De, Leon, T.B., Angeles, E.R., Coloquio, E., Kondoh, H., Satoh, K., Cabunagan, R.C., Cabauatan, P.Q., Kikuchi, S., Leung, H., Choi, I.R.: Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to Rice tungro spherical virus. — Mol. Plant Microbe Interact. 23: 29–38, 2010.PubMedCrossRefGoogle Scholar
  36. Lee, J.H., Pestova, T.V., Shin, B.S., Cao, C., Choi, S.K., Dever, T.E.: Initiation factor eIF5B catalyzes second GTPdependent step in eukaryotic translation initiation. — Proc. nat. Acad. Sci. USA 99: 16689–16694, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lellis, A.D., Allen, M.L., Aertker, A.W., Tran, J.K., Hillis, D.M., Harbin, C.R., Caldwell, C., Gallie, D.R., Browning, K.S.: Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability. — Plant mol. Biol. 74: 249–263, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Liu, Z., Duguay, J., Ma, F., Wang, T.W., Tshin, R., Hopkins, M.T., McNamara, L., Thompson, J.E.: Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. — J. exp. Bot. 59: 939–950, 2008.PubMedCrossRefGoogle Scholar
  39. Ma, F., Liu, Z., Wang, T.W., Hopkins, M.T., Peterson, C.A., Thompson, J.E.: Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress. — Plant Cell Environ. 33: 1682–1696, 2010.PubMedCrossRefGoogle Scholar
  40. Malys, N., McCarthy, J.E.: Translation initiation: variations in the mechanism can be anticipated. — Cell. Mol. Life Sci. 68: 991–1003, 2011.PubMedCrossRefGoogle Scholar
  41. Marintchev, A., Edmonds, K.A., Marintcheva, B., Hendrickson, E., Oberer, M., Suzuki, C., Herdy, B., Sonenberg, N., Wagner, G.: Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. — Cell 136: 447–460, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Marintchev, A., Wagner, G.: Translation initiation: structures, mechanisms and evolution. — Quart. Rev. Biophys. 37: 197–284, 2004.CrossRefGoogle Scholar
  43. Martínez-Silva, A.V., Aguirre-Martinez, C., Flores-Tinoco, C.E., Alejandri-Ramirez, N.D., Dinkova, T.D.: Translation initiation factor AteIF(iso)4E is involved in selective mRNA translation in Arabidopsis thaliana seedlings. — PLoS One 7: e31606, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Mayberry, L.K., Allen, M.L., Dennis, M.D., Browning, K.S.: Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs. — Plant Physiol. 150: 1844–1854, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Mazier, M., Flamain, F., Nicolai, M., Sarnette, V., Caranta, C.: Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. — PLoS One 6: e29595, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Metz, A.M., Browning, K.S.: Assignment of the beta-subunit of wheat eIF2 by protein and DNA sequence analysis and immunoanalysis. — Arch. Biochem. Biophys. 342: 187–189, 1997.PubMedCrossRefGoogle Scholar
  47. Mitchell, S.F., Lorsch, J.R.: Should I stay or should I go? Eukaryotic translation initiation factors 1 and 1A control start codon recognition. — J. biol. Chem. 283: 27345–27349, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Naderpour, M., Lund, O.S., Larsen, R., Johansen, E.: Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele. — Mol. Plant Pathol. 11: 255–263, 2010.PubMedCrossRefGoogle Scholar
  49. Nielsen, K.H., Behrens, M.A., He, Y., Oliveira, C.L., Jensen, L.S., Hoffmann, S.V., Pedersen, J.S., Andersen, G.R.: Synergistic activation of eIF4A by eIF4B and eIF4G. — Nucl. Acids Res. 39: 2678–2689, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Olsen, D.S., Savner, E.M., Mathew, A., Zhang, F., Krishnamoorthy, T., Phan, L., Hinnebusch, A.G.: Domains of eIF1A that mediate binding to eIF2, 3IF3 and eIF5B and promote ternary complex recruitment in vivo. — EMBO J. 22: 193–204, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Osterhout, J.J., Lax, S.R., Ravel, J.M.: Factors from wheat germ that enhance the activity of eukaryotic initiation factor eIF-2. Isolation and characterization of Co-eIF-2 alpha. — J. biol. Chem. 258: 8285–8289, 1983.PubMedGoogle Scholar
  52. Pacheco, A., Martinez-Salas, E.: Insights into the biology of IRES elements through riboproteomic approaches. — J. Biomed. Biotechnol. 45: 8927, 2010.Google Scholar
  53. Parkash, J., Vaidya, T., Kirti, S., Dutt, S.: Translation initiation factor 5A in Picrorhiza is up-regulated during leaf senescence and in response to abscisic acid. — Gene 542: 1–7, 2014.PubMedCrossRefGoogle Scholar
  54. Pavitt, G.D.: eIF2B, a mediator of general and gene-specific translational control. — Biochem. Soc. Trans. 33: 1487–1492, 2005.PubMedCrossRefGoogle Scholar
  55. Pestova, T.V., Kolupaeva, V.G.: The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. — Genes Dev. 16: 2906–2922, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Pestova, T.V., Lomakin, I.B., Lee, J.H., Choi, S.K., Dever, T.E., Hellen, C.U.: The joining of ribosomal subunits in eukaryotes requires eIF5B. — Nature 403: 332–335, 2000.PubMedCrossRefGoogle Scholar
  57. Piron, F., Nicolai, M., Minoia, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C., Bendahmane, A.: An induced mutation in tomato eIF4E leads to immunity to two potyviruses. — PLoS One 5: e11313, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Pisarev, A.V., Hellen, C.U., Pestova, T.V.: Recycling of eukaryotic posttermination ribosomal complexes. — Cell 131: 286–299, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Pisarev, A.V., Kolupaeva, V.G., Yusupov, M.M., Hellen, C.U., Pestova, T.V.: Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. — EMBO J. 27: 1609–1621, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Prevot, D., Darlix, J.L., Ohlmann, T.: Conducting the initiation of protein synthesis: the role of eIF4G. — Biol. Cell 95: 141–156, 2003.PubMedCrossRefGoogle Scholar
  61. Rausell, A., Kanhonou, R., Yenush, L., Serrano, R., Ros, R.: The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. — Plant J. 34: 257–267, 2003.PubMedCrossRefGoogle Scholar
  62. Rodriguez-Hernandez, A.M., Gosalvez, B., Sempere, R.N., Burgos, L., Aranda, M.A., Truniger, V.: Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. — Mol. Plant Pathol. 13: 755–763, 2012.PubMedCrossRefGoogle Scholar
  63. Roy, B., Copenhaver, G.P., Von Arnim, A.G.: Fluorescencetagged transgenic lines reveal genetic defects in pollen growth-application to the eIF3 complex. — PLoS One 6: e17640, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Sahoo, R.K., Gill, S.S., Tuteja, N.: Pea DNA helicase 45 promotes salinity stress tolerance in IR64 rice with improved yield. — Plant Signal Behav 7: 1042–1046, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Schmitt, E., Naveau, M., Mechulam, Y.: Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. — FEBS Lett. 584: 405–412, 2010.PubMedCrossRefGoogle Scholar
  66. Schutz, P., Bumann, M., Oberholzer, A.E., Bieniossek, C., Trachsel, H., Altmann, M., Baumann, U.: Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions. — Proc. nat. Acad. Sci. USA 105: 9564–9569, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Shaikhin, S.M., Smailov, S.K., Lee, A.V., Kozhanov, E.V., Iskakov, B.K.: Interaction of wheat germ translation initiation factor 2 with GDP and GTP. — Biochimie 74: 447–454, 1992.PubMedCrossRefGoogle Scholar
  68. Shen, Y., Li, C., McCarty, D.R., Meeley, R., Tan, B.C.: Embryo defective 12 encodes the plastid initiation factor 3 and is essential for embryogenesis in maize. — Plant J. 74: 792–804, 2013.PubMedCrossRefGoogle Scholar
  69. Shi, L., Weng, J., Liu, C., Song, X., Miao, H., Hao, Z., Xie, C., Li, M., Zhang, D., Bai, L., Pan, G., Li, X., Zhang, S.: Identification of promoter motifs regulating ZmeIF4E expression level involved in maize rough dwarf disease resistance in maize (Zea mays L.). — Mol. Genet. Genomics 288: 89–99, 2013.PubMedCrossRefGoogle Scholar
  70. Sonenberg, N., Hinnebusch, A.G.: Regulation of translation initiation in eukaryotes: mechanisms and biological targets. — Cell 136: 731–745, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Song, A., Lou, W., Jiang, J., Chen, S., Sun, Z., Guan, Z., Fang, W., Teng, N., Chen, F.: An isoform of eukaryotic initiation factor 4E from Chrysanthemum morifolium interacts with chrysanthemum virus B coat protein. — PLoS One 8: e57229, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Steitz, T.A.: A structural understanding of the dynamic ribosome machine. — Nat. Rev. mol. cell. Biol. 9: 242–253, 2008.PubMedCrossRefGoogle Scholar
  73. Suragani, M., Rasheedi, S., Hasnain, S.E., Ehtesham, N.Z.: The translation initiation factor, PeIF5B, from Pisum sativum displays chaperone activity. — Biochem. biophys. Res. Commun. 414: 390–396, 2011.PubMedCrossRefGoogle Scholar
  74. Svitkin, Y.V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G., Belsham, G.J., Sonenberg, N.: The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5’ secondary structure. — RNA 7: 382–394, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Thompson, J.E., Hopkins, M.T., Taylor, C., Wang, T.W.: Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. — Trends Plant Sci. 9: 174–179, 2004.PubMedCrossRefGoogle Scholar
  76. Vain, P., Thole, V., Worland, B., Opanowicz, M., Bush, M.S., Doonan, J.H.: A T-DNA mutation in the RNA helicase eIF4A confers a dose-dependent dwarfing phenotype in Brachypodium distachyon. — Plant J. 66: 929–940, 2011.PubMedCrossRefGoogle Scholar
  77. Vassilenko, K.S., Alekhina, O.M., Dmitriev, S.E., Shatsky, I.N., Spirin, A.S.: Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation. — Nucl. Acids Res. 39: 5555–5567, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  78. Vinocur, B., Altman, A.: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. — Curr. Opin. Biotechnol. 16: 123–132, 2005.PubMedCrossRefGoogle Scholar
  79. Von der Haar, T., Gross, J.D., Wagner, G., McCarthy, J.E.: The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. — Nat. Struct. mol. Biol. 11: 503–511, 2004.PubMedCrossRefGoogle Scholar
  80. Walker, S.E., Zhou, F., Mitchell, S.F., Larson, V.S., Valasek, L., Hinnebusch, A.G., Lorsch, J.R.: Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains. — RNA 19: 191–207, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Wang, A., Krishnaswamy, S.: Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. — Mol. Plant Pathol. 13: 795–803, 2012.PubMedCrossRefGoogle Scholar
  82. Wang, L., Xu, C., Wang, C., Wang, Y.: Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance. — BMC Plant Biol. 12: 118, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Wang, T.W., Lu, L., Wang, D., Thompson, J.E.: Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eukaryotic translation initiation factor 5A from tomato. — J. biol. Chem. 276: 17541–17549, 2001.PubMedCrossRefGoogle Scholar
  84. Wang, X., Kohalmi, S.E., Svircev, A., Wang, A., Sanfacon, H., Tian, L.: Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum. — PLoS One 8: e50627, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Xia, C., Wang, Y.J., Li, W.Q., Chen, Y.R., Deng, Y., Zhang, X.Q., Chen, L.Q., Ye, D.: The Arabidopsis eukaryotic translation initiation factor 3, subunit F (AteIF3f), is required for pollen germination and embryogenesis. — Plant J. 63: 189–202, 2010.PubMedCrossRefGoogle Scholar
  86. Xu, J., Zhang, B., Jiang, C., Ming, F.: RceIF5A, encoding an eukaryotic translation initiation factor 5A in Rosa chinensis, can enhance thermotolerance, oxidative and osmotic stress resistance of Arabidopsis thaliana. — Plant mol. Biol. 75: 167–178, 2011.PubMedCrossRefGoogle Scholar
  87. Yahalom, A., Kim, T.H., Roy, B., Singer, R., Von Arnim, A.G., Chamovitz, D.A.: Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. — Plant J. 53: 300–311, 2008.PubMedCrossRefGoogle Scholar
  88. Yu, Y., Marintchev, A., Kolupaeva, V.G., Unbehaun, A., Veryasova, T., Lai, S.C., Hong, P., Wagner, G., Hellen, C.U., Pestova, T.V.: Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. — Nucl. Acids Res. 37: 5167–5182, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  89. Zhou, F., Roy, B., Von Arnim, A.G.: Translation reinitiation and development are compromised in similar ways by mutations in translation initiation factor eIF3h and the ribosomal protein RPL24. — BMC Plant Biol. 10: 193, 2010.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • S. Dutt
    • 1
    • 2
  • J. Parkash
    • 2
  • R. Mehra
    • 2
  • N. Sharma
    • 2
  • B. Singh
    • 1
  • P. Raigond
    • 1
  • A. Joshi
    • 1
  • S. Chopra
    • 1
  • B. P. Singh
    • 1
  1. 1.ICAR — Central Potato Research InstituteShimlaIndia
  2. 2.Biotechnology DivisionCSIR — Institute of Himalayan Bioresource TechnologyPalampurIndia

Personalised recommendations