Biologia Plantarum

, Volume 59, Issue 3, pp 596–600 | Cite as

Effect of salinity on polyamines and ethylene in Atriplex prostrata and Plantago coronopus

  • M. Bueno
  • Ma. L. Lendínez
  • C. Aparicio
  • Ma. P. Cordovilla
Brief Communication


The aim of this study was to investigate the effects of salinity on germination, seedling growth, free polyamines (putrescine, spermidine, and spermine), and ethylene metabolism of two species (Atriplex prostrata Bouchér and Plantago coronopus L.) with different salt sensitivities. Seeds collected from Barranco Hondo (salt marshes, Jaén, southern Spain) were germinated at 0, 50, 100, and 200 mM NaCl in a growth chamber. The germination of P. coronopus seeds decreased considerably with an increasing NaCl concentration, however, seeds of A. prostrata showed high germination percentages (84, 87, and 80 %) at 0 (control), 50, and 100 mM NaCl, respectively, and only at 200 mM NaCl, the germination was reduced to 25 %. In the early phase of vegetative growth (8-d-old seedlings), the fresh mass increased in A. prostrata at 50 and 100 mM NaCl but the fresh mass of P. coronopus showed no significant differences. With respect to polyamines, there was a decrease of the putrescine and spermidine content at all the NaCl treatments, however, the spermine content increased and was much higher in P. coronopus than in A. prostrata. The ethylene, 1-aminocyclopropane-1-carboxylic acid content, and the 1-amino-cyclopropane-1-carboxylic acid synthase activity increased with the increasing NaCl concentration in A. prostrata, and only the ethylene content in P. coronopus. These results indicate that P. coronopus increased the free spermine content, whereas A. prostrata increased the ethylene biosynthetic pathway in order to survive in the saline conditions.

Additional key words

ACC ACS germination growth regulators halophyte NaCl putrescine spermidine spermine 



1-aminocyclopropane-1-carboxylic acid

ACC oxidase

1-aminocyclopropane-1-carboxylic acid oxidase

ACC synthase

1-aminocyclopropane-1-carboxylic acid synthase


fresh mass


high performance liquid chromatography












Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baskin, C.C., Baskin, J.M. (ed.): Seeds. Ecology, Biogeography and Evolution of Dormancy and Germination. — Academic Press, San Diego — London — Boston — New York — Sydney — Tokyo — Toronto 2001.Google Scholar
  2. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  3. Chai, Y.Y., Jiang, C.D., Shi, L., Shi, T.S., Gu, W.B.: Effects of exogenous spermine on sweet sorghum during germination under salinity. — Biol. Plant. 54:145–148, 2010.CrossRefGoogle Scholar
  4. Chi, G.L., Pua, E.C., Goh, C.J.: Role of ethylene on de novo shoot regeneration from cotyledonary explants of Brassica campestris ssp. pekinesis (Lour) Olsson in vitro. — Plant Physiol. 96: 178–183, 1991.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Ellouzi, H., Hamed, K.B., Cela, J., Munne-Bosch, S., Abdelly, C.: Early effects of salt stress on the physiological and oxidative status of Cakile maritime (halophyte) and Arabidopsis thaliana (glycophyte). — Physiol. Plant. 142: 128–143, 2011.PubMedCrossRefGoogle Scholar
  6. Hassine, A.B., Ghanem, M.E., Bouzid, S., Lutts, S.: An inland and a coastal population of the Mediterranean xerohalophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycine-betaine in response to salinity and water stress. — J. exp. Bot. 59: 1315–1326, 2008.PubMedCrossRefGoogle Scholar
  7. Jiménez-Bremont, J.F., Ruiz, O.A., Rodríguez-Kessler, M.: Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. — Plant Physiol. Biochem. 45: 812–821, 2007.PubMedCrossRefGoogle Scholar
  8. Khan, M.A., Gul, B.: Halophyte seed germination. — In Khan, M.A., Weber, D.J. (ed.): Ecophysiology of High Salinity Tolerant Plants. Pp. 11–30. Springer, Dordrecht 2006.CrossRefGoogle Scholar
  9. Kaur-Sawhney, R., Tiburcio, A.F., Altabella, T., Galston, A.: Polyamines in plants: an overview. — J. cell. mol. Biol. 2: 1–12, 2003.Google Scholar
  10. Le Houérou, H.N.: The role of saltbushes (Atriplex spp.) in arid land rehabilitation in the Mediterranean Basin: a review. — Agroforest. Syst. 18: 107–148, 1992.CrossRefGoogle Scholar
  11. Li, X., Zhang, X., Song, J., Fan, H., Feng, G., Wang, B.: Accumulation of ions during seed development under controlled saline conditions of two Suaeda salsa populations in related to their adaptation to saline environments. — Plant Soil 341: 99–107, 2011.CrossRefGoogle Scholar
  12. Lin, Z., Zhong, S., Grierson, D.: Recent advances in ethylene research. — J. exp. Bot. 60: 3311–3336, 2009.PubMedCrossRefGoogle Scholar
  13. Lizada, M.C., Yang, S.F.: A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. — Anal. Biochem. 100: 140–145, 1979.PubMedCrossRefGoogle Scholar
  14. Maiale, S., Sánchez, D.H., Guira do, A., Vidal, A., Ruiz, O.A.: Spermine accumulation under salt stress. — J. Plant Physiol. 16: 35–42, 2004.CrossRefGoogle Scholar
  15. Mallik, S., Nayak, M., Sahu, B.B., Panigrahi, A.K., Shaw, B.P.: Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. — Biol. Plant. 55: 191–195, 2011.CrossRefGoogle Scholar
  16. Matilla, A.J., Matilla-Vázquez, M.A.: Involvement of ethylene in seed physiology. — Plant Sci. 175: 87–97, 2008.CrossRefGoogle Scholar
  17. Megdiche, W., Amor, N.B., Debez, A., Hessini, K., Ksouri, R., Zuily-Fodil, Y., Abdelly, C.: Salt tolerance of the annual halophyte Cakile maritime as affected by the provenance and the developmental stage. — Acta Physiol. Plant. 29: 375–384, 2007.CrossRefGoogle Scholar
  18. Metha, R.A., Cassol, T., Li, N., Ali, N., Handa, A.K., Mattoo, A.K.: Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. — Natur. Biotechol. 20: 613–618, 2002.CrossRefGoogle Scholar
  19. Pandey, S., Ranade, S.A., Nagar, P.K., Kumar, N.: Role of PAs and ethylene as modulators of plant senescence. — J. Biosci. 25: 291–299, 2000.PubMedCrossRefGoogle Scholar
  20. Quinet, M., Ndayiragije, A., Lefèvre, I., Lambillotte, B., Dupont-Gillian, C.C., Lutts, S.: Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. — J. exp. Bot. 61: 2719–2733, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Sánchez-Calle, I.M., Delgado, M.M., Bueno, M., Diaz-Miguel, M., Matilla, A.J.: The relationship between ethylene production and cell elongation during the inicial growth period of chick-pea seeds (Cicer arietinum). — Physiol. Plant. 76: 569–574, 1989.CrossRefGoogle Scholar
  22. Sannazzaro, A.I., Echevarría, M., Albertó, E.O., Ruiz, O.A., Menéndez, A.B.: Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. — Plant Physiol. Biochem. 45: 39–46, 2007.PubMedCrossRefGoogle Scholar
  23. Smith, M.A., Davies, P.J.: Separation and quantification of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. — Plant Physiol. 78: 89–91, 1985.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Tang, W., Newton, R.J.: Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. — Plant Growth Regul. 46: 31–43, 2005.CrossRefGoogle Scholar
  25. Türkan, I., Demiral, T.: Recent s developments in understanding salinity tolerance: a review. — Environ. exp. Bot. 67: 2–9, 2009.CrossRefGoogle Scholar
  26. Vicente, O., Boscaiu, M., Naranjo, M.A., Estrelles, E., Bellés, J.M., Soriano, P.: Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). — J. arid Environ. 58: 463–481, 2004.CrossRefGoogle Scholar
  27. Wang, H.H., Liang, X.L., Wan, Q., Wang, X.M., Bi, Y.R.: Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. — Planta 230: 293–307, 2009.PubMedCrossRefGoogle Scholar
  28. Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Miyazaki, A., Takahashi, T., Michael, A., Kusano, T.: The polyamine spermine protects against high salt stress in Arabidopsis thaliana. — FEBS Lett. 580: 6783–6788, 2006.PubMedCrossRefGoogle Scholar
  29. Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Takahashi, T., Michael, A.J., Kusano, T.A.: Protective role for the polyamine spermine against drought stress in Arabidopsis. — Biochem. biophys. Res. Commun. 352: 486–490, 2007.PubMedCrossRefGoogle Scholar
  30. Yang, S.F., Hoffman, N.E.: Ethylene biosynthesis and its regulation in higher plants. — Annu. Rev. Plant Physiol. 35: 155–189, 1984.CrossRefGoogle Scholar
  31. Yang, L., Zu, Y.G., Tang, Z.H.: Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. — Environ. exp. Bot. 86: 60–69, 2013.CrossRefGoogle Scholar
  32. Yoshida, M., Tanaka, T.: Studies on genus Plantago growing in Turkey. 1. Morphological comparison of leaf of the wild species. — Natur. Med. 51: 431–441, 1997.Google Scholar
  33. Zapata, P.J., Botella, M.A., Pretel, M.T., Serrano, M.: Responses of ethylene biosynthesis to saline stress in seedlings of eight plant species. — Plant Growth Regul. 53: 97–106, 2007.CrossRefGoogle Scholar
  34. Zapata, P.J., Serrano, M., Pretel, M.T., Amorós, A., Botella, M.A.: Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. — Plant Sci. 164: 557–563, 2003.CrossRefGoogle Scholar
  35. Zapata, P.J., Serrano, M., Pretel, M.T., Amorós, A., Botella, M.A.: Polyamines and ethylene changes during germination of different plant species under salinity. — Plant Sci. 167: 781–788, 2004.CrossRefGoogle Scholar
  36. Zapata, P.J., Serrano, M., Pretel, M.T., Botella, M.A.: Changes in free polyamines concentration induced by salt stress in seedlings of different species. — Plant Growth Regul. 56: 167–177, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. Bueno
    • 1
  • Ma. L. Lendínez
    • 1
  • C. Aparicio
    • 1
  • Ma. P. Cordovilla
    • 1
  1. 1.Department of Animal Biology, Plant Biology and Ecology, Faculty of Experimental SciencesUniversity of JaénJaénSpain

Personalised recommendations