Advertisement

Biologia Plantarum

, Volume 59, Issue 2, pp 253–265 | Cite as

Genome-wide identification and characterization of the DREB transcription factor gene family in mulberry

  • X. Q. Liu
  • J. J. Zhu
  • C. J. Wei
  • Q. Guo
  • C. K. Bian
  • Z. H. Xiang
  • A. C. Zhao
Original Papers

Abstract

The dehydration responsive element binding (DREB) transcription factor (TF) family comprises unique and important proteins involved in abiotic stress responses and tolerance in plants. Although DREB TFs have been well identified and characterized in a few model plants, there is no detailed information available for mulberry. In this study, 110 AP2/ERF family genes were identified based on a genome-wide analysis of the Morus genome database. Among them, 30 Morus notabilis DREB family genes (MnDREBs) were identified. A comparative analysis with DREB gene families from other plants suggests that MnDREBs could be divided into six subgroups (A-1 to A-6) and could have similar functions in response to abiotic stresses since they have similar conserved domains/motifs within each subgroup. The expression patterns of MnDREBs were analyzed using transcriptome data of different organs from M. notabilis and the quantitative real-time polymerase chain reaction. The expression of most MnDREBs was detected in different organs and induced by various abiotic stresses, which suggest their vital roles in abiotic stress tolerance.

Additional key words

abiotic stress cold expression profile heat Morus notabilis salinity water stress 

Abbreviations

ABRE

element involved in the abscisic acid responsiveness

AP2

APETALA2

ARE

element for the anaerobic induction

CBF1

CRT/DRE-binding factor 1

CDS

corresponding coding sequence

DRE

dehydration-responsive element

DRTF

database of rice transcription factors

DREB

dehydration responsive element binding

ERE

ethylene-responsive element

ERF

ethylene responsive element binding factors

GARE

gibberellin-responsive element

Glu

glutamine

GWD

genome-wide duplications

HSE

element involved in heat stress responsiveness

LTR

element involved in low-temperature responsiveness

MBS

MYB binding site

MBSI:MYB

binding site involved in flavonoid biosynthetic genes regulation

NCBI

National Center for Biotechnology Information

NJ

neighbor-joining

NLS

nuclear localization sequence

ORF

open reading frame

pI

isoelectric point

plant TFDB

plant transcription factor database

RAV

related to ABI3/VP1

RPL15

ribosomal protein L15

RT-qPCR

real-time quantitative polymerase chain reaction

SMART

simple modular architecture research tool

TAIR

Arabidopsis information resource

TF

transcription factor

Val

valine

WUN

wound-responsive element

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2015_498_MOESM1_ESM.pdf (355 kb)
Supplementary material, approximately 355 KB.

References

  1. Agarwal, P., Agarwal, P.K., Nair, S., Sopory, S.K., Reddy, M.K.: Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. — Mol. Genet. Genomics 277: 189–198, 2007.PubMedCrossRefGoogle Scholar
  2. Agarwal, P.K., Agarwal, P., Reddy, M.K., Sopory, S.K.: Role of DREB transcription factors in abiotic and biotic stress tolerance in plant. — Plant Cell Rep. 25: 1263–1274, 2006.PubMedCrossRefGoogle Scholar
  3. Agarwal, P.K., Jha, B.: Transcription factors in plants and ABA dependent and independent abiotic stress signaling. — Biol. Plant. 54: 201–212, 2010.CrossRefGoogle Scholar
  4. Akhtar, M., Jaiswal, A., Taj, G., Jaiswal, J.P., Qureshi, M.I., Singh, N.K.: DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. — J. Genet. 91: 385–395, 2012.PubMedCrossRefGoogle Scholar
  5. Bouaziz, D., Pirrello, J., Ben Amor, H., Hammami, A., Charfeddine, M., Dhieb, A., Bouzayen, M., Gargouri-Bouzid, R.: Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. — Plant Physiol. Biochem. 60: 98–108, 2012.Google Scholar
  6. Boyer, J.S.: Plant Productivity and Environment. — Science 218: 443–448, 1982.PubMedCrossRefGoogle Scholar
  7. Checker, V.G., Khurana, P.: Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress. — Plant Cell Rep. 32: 1729–1741, 2013.PubMedCrossRefGoogle Scholar
  8. Chen, M., Wang, Q.Y., Cheng, X.G., Xu, Z.S., Li, L.C., Ye, X.G., Xia, L.Q., Ma, Y.Z.: GmDREB2, a soybean DREbinding transcription factor, conferred drought and high-salt tolerance in transgenic plants. — Biochem. biophys. Res. Commun. 353: 299–305, 2007.PubMedCrossRefGoogle Scholar
  9. Chen, Y., Yang. J., Wang, Z., Zhang, H., Mao, X., Li, C.: Gene structures, classification, and expression models of the DREB transcription factor subfamily in Populus trichocarpa. — Sci. World J. doi.org/10.1155/2013/954640, 2013.Google Scholar
  10. Cui, M., Zhang, W., Zhang, Q., Xu, Z., Zhu, Z., Duan, F., Wu, R.: Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. — Plant Physiol. Biochem. 49: 1384–1391, 2011.PubMedCrossRefGoogle Scholar
  11. Dong, C.J., Liu, J.Y.: The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. — BMC Plant Biol. 10: 47, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high salt and cold responsive gene expression. — Plant J. 33: 751–763, 2003.PubMedCrossRefGoogle Scholar
  13. Egawa, C., Kobayashi, F., Ishibashi M., Nakamura, T., Nakamura, C., Takumi, S.: Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. — Genes. Genet. Syst. 81: 77–91, 2006.PubMedCrossRefGoogle Scholar
  14. Guo, A.Y., Zhu, Q.H., Chen, X., Luo, J.C.: GSDS: a gene structure display server. — Yi Chuan 29: 1023–1026, 2007.PubMedCrossRefGoogle Scholar
  15. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity. — Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463–499, 2000.PubMedCrossRefGoogle Scholar
  16. He, N., Zhang, C., Qi, X., Zhao, S., Tao, Y., Yang, G., Lee, T.H., Wang, X., Cai, L., Li, D., Lu, M., Liao, S., Luo, G., He, R., Tan, H., Xu, Y., Li, T., Zhao, A., Jia, L., Fu, Q., Zeng, Q., Gao, C., Ma, B., Liang, J., Wang, X., Shang, J., Song, P., Wu, H., Fan, L., Wang, Q., Shuai, Q., Zhu, J., Wei, C., Zhu-Salzman, K., Jin, D., Wang, J., Liu, T., Yu, M., Tang, C., Wang, Z., Dai, F., Chen, J., Liu, Y., Zhao, S., Lin, T., Zhang, S., Wang, J., Wang, J., Yang, H., Yang, G., Wang, J., Paterson, A.H., Xia, Q., Ji, D.: Draft genome sequence of the mulberry tree Morus notabilis. — Nat. Commun. 4: 2445, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Huang, G.T., Ma, S.L., Bai, L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., Guo, Z.F.: Signal transduction during cold, salt, and drought stresses in plants. — Mol. Biol. Rep. 39: 969–987, 2012.PubMedCrossRefGoogle Scholar
  18. Hussain, S.S., Kayani, M.A., Amjad, M.: Transcription factors as tools to engineer enhanced drought stress tolerance in plants. — Biotechnol. Progr. 27: 297–306, 2011.CrossRefGoogle Scholar
  19. Hwang, J.E., Lim, C.J., Chen, H., Je, J., Song, C., Lim, C.O.: Overexpression of Arabidopsis dehydration-responsive element-binding protein 2C confers tolerance to oxidative stress. — Mol. Cells 33: 135–140, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Islam, M.S., Wang, M.H.: Expression of dehydration responsive element-binding protein-3 (DREB3) under different abiotic stresses in tomato. — BMB Rep. 42: 611–616, 2009.PubMedCrossRefGoogle Scholar
  21. Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyère, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Fabbro, C.D., Alaux, M., Gaspero, G.D., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Clainche, I.L., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pè, M.E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.F., Weissenbach, J., Quétier, F., Wincker, P.: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. — Nature 449: 463–467, 2007.PubMedCrossRefGoogle Scholar
  22. Jofuku, K.D., Den Boer, B.G., Van Montagu, M., Okamuro, J.K.: Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. — Plant Cell 6: 1211–1225, 1994.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kizis, D., Pages, M.: Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought responsive element in an ABA-dependent pathway. — Plant J. 30: 679–689, 2002.PubMedCrossRefGoogle Scholar
  24. Lata, C., Prasad, M.: Role of DREBs in regulation of abiotic stress responses in plants. — J. exp. Bot. 62: 4731–4748, 2011.PubMedCrossRefGoogle Scholar
  25. Lee, S.J., Kang, J.Y., Park, H.J., Kim, H.D., Bae, M.S., Choi, Choi, H.I., Kim, S.Y.: DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsivegene expression, and its overexpression affects abscisic acid sensitivity. — Plant Physiol. 153: 716–727, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Li, M., Li, Y., Li, H., Wu, G.: Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. — Tree Physiol. 32: 104–113, 2011a.PubMedCrossRefGoogle Scholar
  27. Li, M.R., Li, Y., Li, H.Q., Wu, G.J.: Ectopic expression of FaDREB2 enhances osmotic tolerance in paper mulberry. — J. Integr. Plant Biol. 53: 951–960, 2011b.PubMedCrossRefGoogle Scholar
  28. Lucas, S., Durmaz, E., Akpınar, B.A., Budak, H.: The drought response displayed by a DRE-binding protein from Triticum dicoccoides. — Plant Physiol. Biochem. 49, 346–351, 2011.PubMedCrossRefGoogle Scholar
  29. Marcolino-Gomes, J., Rodrigues, F.A., Oliveira, M.C., Farias, J.R., Neumaier, N., Abdelnoor, R.V., Marcelino-Guimarães, F.C., Nepomuceno, A.L.: Expression patterns of GmAP2/EREB-like transcription factors involved in soybean responses to water deficit. — PLOS ONE. 8: e62294, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., Shinozaki, K., Yamaguchi-Shinozaki, K.: Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. — Mol. Genet. Genomics 283: 185–196, 2010.Google Scholar
  31. Mayer, K., White, O., Bevan, M., Lemcke, K., Creasy, T.H., Bielke, C., Haas, B., Haase, D., Maiti, R., Rudd, S., Peterson, J., Schoof, H., Frishman, D., Morgenstern, B., Zaccaria, P., Ermolaeva, M., Pertea, M., Quackenbush, J., Volfovsky, N., Wu, D., Lowe, T.M., Salzberg, S.L., Mewes, H.W.: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. — Nature 408: 796–815, 2000.CrossRefGoogle Scholar
  32. Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H.: Genomewide analysis of the ERF gene family in Arabidopsis and rice. — Plant Physiol. 140: 411–432, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L.S., Shinozaki, K., Yamaguchi-Shinozaki, K.: Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. — Plant J. 50: 54–69, 2007.PubMedCrossRefGoogle Scholar
  34. Ramachandra Reddy, A., Chaitanya, K.V., Jutur, P.P., Sumithra, K.: Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. — Environ. exp. Bot. 52: 33–42, 2004.CrossRefGoogle Scholar
  35. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. — Mol. Biol. Evol. 4: 406–425, 1987.PubMedGoogle Scholar
  36. Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., Yamaguchi-Shinozaki, K.: DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydrationand cold-inducible gene expression. — Biochem. biophys. Res. Commun. 290: 998–1009, 2002.PubMedCrossRefGoogle Scholar
  37. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. — Plant Cell 13: 61–72, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Sharma, M.K., Kumar, R., Solanke, A.U., Sharma, R., Tyagi, A.K., Sharma, A.K.: Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. — Mol. Genet. Genomics 284: 455–475, 2010.PubMedCrossRefGoogle Scholar
  39. Sharoni, A.M.1., Nuruzzaman, M., Satoh, K., Shimizu, T., Kondoh, H., Sasaya, T., Choi, I.R., Omura, T., Kikuchi, S.: Gene structures, classification and expression models of the AP2/ERFBP transcripttion factor family in rice. — Plant Cell Physiol. 52: 344–360, 2011.PubMedCrossRefGoogle Scholar
  40. Shen, Y.G., Zhang, W.K., He, S.J., Zhang, J.S., Liu, Q., Chen, S.Y.: An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. — Theor. appl. Genet. 106: 923–930, 2003.PubMedGoogle Scholar
  41. Singhal, B.K., Khan, M.A., Dhar, A., Baqual, F.M., Bindroo, B.B.: Approaches to industrial exploitation of mulberry (Mulberry sp.) fruits. — J. Fruit Ornam. Plant Res. 18: 83–99, 2010.Google Scholar
  42. Stockinger, E.J., Gilmour, S.J., Thomashow, M.F.: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. — Proc. nat. Acad. Sci. USA 94: 1035–104, 1997.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. — Mol. Biol. Evol. 28: 2731–2739, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Tang, M., Liu, X., Deng, H., Shen, S.: Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. — Plant Sci. 181: 623–631, 2011.PubMedCrossRefGoogle Scholar
  45. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G.: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. — Nucl. Acids Res. 25: 4876–4882, 1997.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Tuskan, G.A., Difazio, S., Jansson, S., Bohlmann, J., Grigorive, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R. R., Bhalerao, R. P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G.L., Cooper, D., Coutinho, P. M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Déjardin, A., De Pamphilis, C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., Henrissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N., Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjärvi, J., Karlsson, J., Kelleher, C., Kirkpatrick, R., Kirst, M., Kohler, A., Kalluri, U., Larimer, F., Leebens-Mack, J., Leplé, J.C., Locascio, P., Lou, Y., Lucas, S., Martin, F., Montanini, B., Napoli, C., Nelson, D. R., Nelson, C., Nieminen, K., Nilsson, O., Pereda, V., Peter, G., Philippe, R., Pilate, G., Poliakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K., Rouzé, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A., Sterky, F., Terry, A., Tsai, C.J., Uberbacher, E., Unneberg, P., Vahala, J., Wall, K., Wessler, S., Yang, G., Yin, T., Douglas, C., Marra, M., Sandberg, G., Van de Peer, Y., Rokhsar, D.: The Genome of black cottonwood, Populus trichocarpa (Torr. & Gray). — Science 313: 1596–1604, 2006.PubMedCrossRefGoogle Scholar
  47. Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., Fontana, P., Bhatnagar, S.K., Troggio, M., Pruss, D., Salvi, S., Pindo, M., Baldi, P., Castelletti, S., Cavaiuolo, M., Coppola, G., Costa, F., Cova, V., Ri, A.D., Goremykin, V., Komjanc, M., Longhi, S., Magnago, P., Malacarne, G., Malnoy, M., Micheletti, D., Moretto, M., Perazzolli, M., Si-Ammour, A., Vezzulli, S., Zini, E., Eldredge, G., Fitzgerald, L.M., Gutin, N., Lanchbury, J., Macalma, T., Mitchell, J.T., Reid, J., Wardell, B., Kodira, C., Chen, Z., Desany, B., Niazi, F., Palmer, M., Koepke, T., Jiwan, D., Schaeffer, S., Krishnan, V., Wu, C., Chu, V.T., King, S.T., Vick, J., Tao, Q., Mraz, A., Stormo, A., Stormo, K., Bogden, R., Ederle, D., Stella, A., Vecchietti, A., Kater, M.M., Masiero, S., Lasserre, P., Lespinasse, Y., Allan, A.C., Bus, V., Chagné, D., Crowhurst, R.N., Gleave, A.P., Lavezzo, E., Fawcett, J.A., Proost, S., Rouzé, P., Sterck, L., Toppo, S., Lazzari, B., Hellens, R.P., Durel, C.E., Gutin, A., Bumgarner, R.E., Gardiner, S.E., Skolnick, M., Egholm, M., Van de Peer, Y., Salamini, F., Viola, R.: The genome of the domesticated apple (Malus × domestica Borkh.). — Nat. Genet. 42: 833–839, 2010.PubMedCrossRefGoogle Scholar
  48. Wei, C., Liu, X., Long, D., Guo, Q., Fang, Y., Bian, C., Zhang, D., Zeng, Q., Xiang, Z., Zhao, A.: Molecular cloning and expression analysis of mulberry MAPK gene family. — Plant Physiol. Biochem. 77C: 108–116, 2014.CrossRefGoogle Scholar
  49. Xue, G.P., Loveridge, C.W.: HvDRF1 is involved in abscisic acid mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. — Plant J. 37: 326–339, 2004.PubMedCrossRefGoogle Scholar
  50. Xue, Y., Wang, Y.Y., Peng, R.H., Zhen, J.L., Zhu, B., Gao, J.J., Zhao, W., Han, H.J., Yao, Q.H.: Transcription factor MdCBF1 gene increases freezing stress tolerance in transgenic Arabidopsis thaliana. — Biol. Plant. 58: 499–506, 2014.CrossRefGoogle Scholar
  51. Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, J., Qi, Q., Liu, J., Li, L., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Zhang, J., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W., Li, P., Chen, W., Wang, X., Zhang, Y., Hu, J., Wang, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Li, G., Liu, S., Tao, M., Wang, J., Zhu, L., Yuan, L., Yang, H.: A draft sequence of the rice genome (Oryza sativa L. ssp.indica). — Science 296: 79–92, 2002.PubMedCrossRefGoogle Scholar
  52. Zhao, T., Liang, D., Wang, P., Liu, J., Ma, F.: Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. — Mol. Genet. Genomics 287: 423–436, 2012.PubMedCrossRefGoogle Scholar
  53. Zhao, T., Xia, H., Liu, G., Ma, F.: The gene family of dehydration responsive element-binding transcription factors in grape (Vitis vinifera): genome-wide identification and analysis, expression profiles, and involvement in abiotic stress resistance. — Mol. Biol. Rep. 41: 1577–1590, 2014.PubMedCrossRefGoogle Scholar
  54. Zhou, M.L., Ma, J.T., Zhao, Y.M., Wei, Y.H., Tang, Y.X., Wu, Y.M.: Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. — Gene 506: 10–17, 2012.PubMedCrossRefGoogle Scholar
  55. Zhu, T., Budworth, P., Han, B., Brown, D., Chang, H.S., Zou, G.Z., Wang, X.: Toward elucidating the global expression patterns of developing Arabidopsis: parallel analysis of 8 300 genes by a high-density oligonucleotide probe array. — Plant Physiol. Biochem. 39: 221–242, 2001.CrossRefGoogle Scholar
  56. Zhuang, J., Cai, B., Peng, R.H., Zhu, B., Jin, X.F., Xue, Y., Gao, F., Fu, X.Y., Tian, Y.S., Zhao, W., Qiao, Y.S., Zhang, Z., Xiong, A.S., Yao, Q.H.: Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. — Biochem. biophys. Res. Commun. 371: 468–474, 2008.PubMedCrossRefGoogle Scholar
  57. Zhuang, J., Peng, R.H., Cheng, Z.M., Zhang, J., Cai, B., Zhang, Z., Gao, F., Zhu, B., Fu, X.Y., Jin, X.F., Chen, J.M., Qiao, Y.S., Xiong, A.S., Yao, Q.H.: Genome-wide analysis of the putative AP2/ERF family genes in Vitis vinifera. — Scientia Hort. 123: 73–81, 2009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • X. Q. Liu
    • 1
  • J. J. Zhu
    • 1
  • C. J. Wei
    • 1
  • Q. Guo
    • 1
  • C. K. Bian
    • 1
  • Z. H. Xiang
    • 1
  • A. C. Zhao
    • 1
  1. 1.State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural MinistrySouthwest UniversityChongqingP.R. China

Personalised recommendations