Advertisement

Biologia Plantarum

, Volume 59, Issue 2, pp 273–282 | Cite as

Anther proteomic characterization in temperature sensitive Bainong male sterile wheat

  • Y. -Y. Li
  • Y. Li
  • Q. -G. Fu
  • H. -H. Sun
  • Z. -G. Ru
Original Papers
  • 216 Downloads

Abstract

Male sterile line is a useful material for hybridization, but its sterility mechanism, especially proteomic profile, is still not entirely clear. In wheat (Triticum aestivum L.), a male sterile Bainong (BNS) genotype whose sterility could be manipulated by temperature was recently selected. We focused on the proteomic profile change of anthers from the male sterile line (SL) and its conversional line (CL). Two-dimensional gel electrophoresis and MALDI-TOF-MS technologies were utilized for proteomic profiles analysis. Differently abundant protein spots (over 2-fold, P < 0.05) were selected for identification analysis. Compared to CL, 24 up-regulated and 23 down-regulated proteins were identified in SL. Protein metabolism-related proteins, which included a ubiquitin-conjugating enzyme E2 (23 kDa) and an ATP-dependent Clp protease proteolytic subunit, were over-accumulated in SL anthers. Alcohol dehydrogenase ADH1A, fructose-bisphosphate aldolase, chloroplast fructose-bisphosphate aldolase, and NADP-dependent malic enzyme were notably down-regulated in SL anthers. Up-regulated prohibitin protein Wph and a translationallycontrolled tumor protein homolog, and down-regulated histone acetyltransferases HAT1 and HAT2, and DNA directed RNA polymerase subunit α were identified in SL anthers. These dramatically changed proteins may play a crucial role in abnormal anther development and pollen abortion in BNS.

Additional key words

cytoplasmic male sterility protein degradation proteome Triticum aestivum 

Abbreviations

BNS

Bainong male sterility

CL

conversional line

GDH

glutamate dehydrogenase

GMS

genic male sterility

ROS

reactive oxygen species

SHMT

serine hydroxymethyltransferase

sHSPs

small heat shock proteins

SL

sterile line

TCTP

translationally-controlled tumor protein homolog

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2015_486_MOESM1_ESM.pdf (108 kb)
Supplementary material, approximately 107 KB.

References

  1. Bewley, M. C., Graziano, V., Griffin, K., Flanagan, J. M.: Turned on for degradation: ATPase-independent degradation by ClpP. — J. struct. Biol. 165: 118–125, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pages, F., Trajanoski, Z., Galon, J.: ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. — Bioinformatics 25: 1091–1093, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Book, A.J., Smalle, J., Lee, K.H., Yang, P., Walker, J.M., Casper, S., Holmes, J.H., Russo, L.A., Buzzinotti, Z.W., Jenik, P.D., Vierstra, R.D.: The RPN5 subunit of the 26s proteasome is essential for gametogenesis, sporophyte development, and complex assembly in Arabidopsis. — Plant Cell 21: 460–478, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Brukhin, V., Gheyselinck, J., Gagliardini, V., Genschik, P., Grossniklaus, U.: The RPN1 subunit of the 26S proteasome in Arabidopsis is essential for embryogenesis. — Plant Cell 17: 2723–2737, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chaudhury, A.M.: Nuclear genes controlling male fertility. — Plant Cell 5: 1277–1283, 1993.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chen, L., Liu, Y.G.: Male sterility and fertility restoration in crops. — Annu. Rev. Plant Biol. 65: 579–606, 2013.PubMedCrossRefGoogle Scholar
  7. Chowdhury, I., Thompson, W.E., Thomas, K.: Prohibitins role in cellular survival through Ras-Raf-MEK-Erk pathway. — J. cell. Physiol. 229: 998–1004, 2013.CrossRefGoogle Scholar
  8. Clément, C., Audran, J.C.: Anther wall layers control pollen sugar nutrition inLilium. — Protoplasma 187: 172–181, 1995.CrossRefGoogle Scholar
  9. Clément, C., Burrus, M., Audran, J. C.: Floral organ growth and carbohydrate content during pollen development in Lilium. — Amer. J. Bot. 83: 459–469, 1996.CrossRefGoogle Scholar
  10. Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., Robles, M.: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. — Bioinformatics 21: 3674–3676, 2005.PubMedCrossRefGoogle Scholar
  11. Damerval, C., Vienne, D. D., Zivy, M., Thiellement, H.: Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. — Electrophoresis 7: 52–54, 1986.CrossRefGoogle Scholar
  12. De Hoon, M.J., Imoto, S., Nolan, J., Miyano, S.: Open source clustering software. — Bioinformatics 20: 1453–1454, 2004.PubMedCrossRefGoogle Scholar
  13. Dewey, R.E., Timothy, D.H., Levings, C.S.: A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. — Proc. nat. Acad. Sci. USA 84: 5374–5378, 1987.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dolferus, R., Jacobs, M.: Polymorphism of alcohol dehydrogenase in Arabidopsis thaliana (L.) Heynh.: genetical and biochemical characterization. — Biochem. Genet. 22: 817–838, 1984.PubMedCrossRefGoogle Scholar
  15. Dorion, S., Lalonde, S., Saini, H. S.: Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. — Plant Physiol. 111: 137–145, 1996.PubMedCentralPubMedGoogle Scholar
  16. Ducos, E., Touzet, P., Boutry, M.: The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. — Plant J. 26: 171–180, 2001.PubMedCrossRefGoogle Scholar
  17. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. — Proc. nat. Acad. Sci. USA 95: 14863–14868, 1998.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Feng, Y., Zhang, M., Guo, Q., Wang, G., Gong, J., Xu, Y., Wang, W.: Manipulation of monoubiquitin improves chilling tolerance in transgenic tobacco (Nicotiana tabacum). — Plant Physiol. Biochem. 75: 138–144, 2014.PubMedCrossRefGoogle Scholar
  19. Forde, B.G., Oliver, R.J., Leaver, C.J.: Variation in mitochondrial translation products associated with malesterile cytoplasms in maize. — Proc. nat. Acad. Sci. USA 75: 3841–3845, 1978.Google Scholar
  20. Fritz, G., Kaina, B.: rhoB encoding a UV-inducible Rasrelated small GTP-binding protein is regulated by GTPases of the Rho family and independent of JNK, ERK, and p38 MAP kinase. — J. biol. Chem. 272: 30637–30644, 1997.PubMedCrossRefGoogle Scholar
  21. Ganesan, M., Han, Y.J., Bae, T.W., Hwang, O.J., Chandrasekhar, T., Shin, A.Y., Goh, C.H., Nishiguchi, S., Song, I.J., Lee, H.Y., Kim, J.I., Song, P.S.: Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass. — Planta 236: 1135–1150, 2012.PubMedCrossRefGoogle Scholar
  22. Goetz, M., Godt, D. E., Guivarc'h, A., Kahmann, U., Chriqui, D., Roitsch, T.: Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. — Proc. nat. Acad. Sci. USA 98: 6522–6527, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Guo, W., Zou, L.F., Li, Y.R., Cui, Y.P., Ji, Z.Y., Cai, L.L., Zou, H.S., Hutchins, W.C., Yang, C.H., Chen, G.Y.: Fructose-bisphophate aldolase exhibits functional roles between carbon metabolism and the hrp system in rice pathogen Xanthomonas oryzae pv. oryzicola. — PLoS One 7: e31855, 2012.Google Scholar
  24. Hinojosa-Moya, J. J., Xoconostle-Cazares, B., Toscano-Morales, R., Arturo Ramirez-Ortega, F., Luis Cabrera-Ponce, J., Ruiz-Medrano, R.: Characterization of the pumpkin translationally-controlled tumor protein CmTCTP. — Plant Signal. Behav. 8: 1–8, 2013.CrossRefGoogle Scholar
  25. Ishikawa, T., Shigeoka, S.: Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. — Biosci. Biotechnol. Biochem. 72: 1143–1154, 2008.PubMedCrossRefGoogle Scholar
  26. Jamai, A., Salome, P.A., Schilling, S.H., Weber, A.P., McClung, C.R.: Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. — Plant Cell. 21: 595–606, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Jumtee, K., Okazawa, A., Harada, K., Fukusaki, E., Takano, M., Kobayashi, A.: Comprehensive metabolite profiling of phyA phyB phyC triple mutants to reveal their associated metabolic phenotype in rice leaves. — J. Biosci. Bioeng. 108: 151–159, 2009.PubMedCrossRefGoogle Scholar
  28. Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. — Nucl. Acids Res. 28: 27–30, 2000.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kaul, M. L. H.: Male Sterility in Higher Plants. — Springer-Verlag, Berlin — Heidelberg 1988.CrossRefGoogle Scholar
  30. Konovalov, A.A., Ibragimova, S.S., Dorogova, N.V.: [Inheritance and expression of gametophyte gene Adh-P causing modification of alcohol dehydrogenase in pollen grains of the beet (Beta vulgaris L.)]. — Genetika 39: 1328–1337, 2003. [In Russ.]PubMedGoogle Scholar
  31. Li, L., Ru, Z., Gao, Q., Jiang, H., Guo, F., Wu, S., SUN, Z.: Male sterility and thermo-photosensitivity characteristics of BNS in wheat. — Scientia agr. sin. 42: 3019–3027, 2009.Google Scholar
  32. Liepman, A.H., Olsen, L.J.: Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. — Plant J. 25: 487–498, 2001.PubMedCrossRefGoogle Scholar
  33. Link, A.J., LaBaer, J.: Trichloroacetic acid (TCA) precipitation of proteins. — Cold Spring Harbor Protoc. 2011: 993–994, 2011.Google Scholar
  34. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. — Methods 25: 402–408, 2001.PubMedCrossRefGoogle Scholar
  35. Mariani, C., Beuckeleer, M.D., Truettner, J., Leemans, J., Goldberg, R.B.: Induction of male sterility in plants by a chimaeric ribonuclease gene. — Nature 347: 737–741, 1990.CrossRefGoogle Scholar
  36. Mariani, C., Goldberg, R.B., Leemans, J.: Engineered male sterility in plants. — Symp. Soc. exp. Biol. 45: 271–279, 1991.PubMedGoogle Scholar
  37. McCarthy, F.M., Wang, N., Magee, G.B., Nanduri, B., Lawrence, M.L., Camon, E.B., Barrell, D.G., Hill, D.P., Dolan, M.E., Williams, W.P., Luthe, D.S., Bridges, S.M., Burgess, S.C.: AgBase: a functional genomics resource for agriculture. — BMC Genom. 7: 229, 2006.CrossRefGoogle Scholar
  38. Millar, A.A., Clemens, S., Zachgo, S., Giblin, E.M., Taylor, D.C., Kunst, L.: CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. — Plant Cell 11: 825–838, 1999.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Mishra, S., Ande, S.R., Nyomba, B.L.: The role of prohibitin in cell signaling. — FEBS J. 277: 3937–3946, 2010.PubMedCrossRefGoogle Scholar
  40. Moreno, J.I., Martin, R., Castresana, C.: Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. — Plant J. 41: 451–463, 2005.PubMedCrossRefGoogle Scholar
  41. Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. — Electrophoresis 20: 3551–3567, 1999.PubMedCrossRefGoogle Scholar
  42. Popov, V.N., Eprintsev, A.T., Fedorin, D.N., Igamberdiev, A.U.: Succinate dehydrogenase in Arabidopsis thaliana is regulated by light via phytochrome A. — FEBS Lett. 584: 199–202, 2010.PubMedCrossRefGoogle Scholar
  43. Raines, C.A.: Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. — Plant Cell Environ. 29: 331–339, 2006.PubMedCrossRefGoogle Scholar
  44. Reid, B.G., Fenton, W.A., Horwich, A.L., Weber-Ban, E.U.: ClpA mediates directional translocation of substrate proteins into the ClpP protease. — Proc. nat. Acad. Sci. USA 98: 3768–3772, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Ricoult, C., Echeverria, L.O., Cliquet, J.B., Limami, A.M.: Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. — J. exp. Bot. 57: 3079–3089, 2006.PubMedCrossRefGoogle Scholar
  46. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. — Genome Res. 13: 2498–2504, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Simpson, R. J.: Proteins and Proteomics: A Laboratory Manual. — Cold Spring Harbor Laboratory Press, Cold Spring Harbor 2003.Google Scholar
  48. Sjogren, L.L., Stanne, T.M., Zheng, B., Sutinen, S., Clarke, A.K.: Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. — Plant Cell 18: 2635–2649, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Smalle, J., Kurepa, J., Yang, P., Babiychuk, E., Kushnir, S., Durski, A., Vierstra, R.D.: Cytokinin growth responses in Arabidopsis involve the 26S proteasome subunit RPN12. — Plant Cell 14: 17–32, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Smalle, J., Kurepa, J., Yang, P., Emborg, T.J., Babiychuk, E., Kushnir, S., Vierstra, R.D.: The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. — Plant Cell 15: 965–980, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Somerville, C.R., Ogren, W.L.: Photorespiration-deficient mutants of Arabidopsis thaliana lacking mitochondrial serine transhydroxymethylase activity. — Plant Physiol. 67: 666–671, 1981.Google Scholar
  52. Song, J., Hedgcoth, C.: A chimeric gene (orf256) is expressed as protein only in cytoplasmic male-sterile lines of wheat. — Plant mol. Biol. 26: 535–539, 1994.PubMedCrossRefGoogle Scholar
  53. Su, Q.Z., Cheng, W., Li, Y.: Morphological and structural observations on anther and microspore developments of male sterile line BNS in wheat. — J. Henan Inst. Sci. Technol. 39: 5–9, 2011.Google Scholar
  54. Ueda, M., Matsui, K., Ishiguro, S., Sano, R., Wada, T., Paponov, I., Palme, K., Okada, K.: The HALTED ROOT gene encoding the 26S proteasome subunit RPT2a is essential for the maintenance of Arabidopsis meristems. — Development 131: 2101–2111, 2004.PubMedCrossRefGoogle Scholar
  55. Uematsu, K., Suzuki, N., Iwamae, T., Inui, M., Yukawa, H.: Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. — J. exp. Bot. 63: 3001–3009, 2012.PubMedCrossRefGoogle Scholar
  56. Vierstra, R.D.: The ubiquitin-26S proteasome system at the nexus of plant biology. — Natur. Rev. mol. Cell Biol. 10: 385–397, 2009.CrossRefGoogle Scholar
  57. Voges, D., Zwickl, P., Baumeister, W.: The 26S proteasome: a molecular machine designed for controlled proteolysis. — Annu. Rev. Biochem. 68: 1015–1068, 1999.PubMedCrossRefGoogle Scholar
  58. Wang, A., Xia, Q., Xie, W., Datla, R., Selvaraj, G.: The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. — Proc. nat. Acad. Sci. USA 100: 14487–14492, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Wang, K., Gao, F., Ji, Y., Liu, Y., Dan, Z., Yang, P., Zhu, Y., Li, S.: ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in Honglian cytoplasmic male sterile rice. — New Phytol. 198: 408–418, 2013.PubMedCrossRefGoogle Scholar
  60. Waters, E.R.: The evolution, function, structure, and expression of the plant sHSPs. — J. exp. Bot. 64: 391–403, 2013.PubMedCrossRefGoogle Scholar
  61. Weber-Ban, E.U., Reid, B.G., Miranker, A.D., Horwich, A.L.: Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. — Nature 401: 90–93, 1999.PubMedCrossRefGoogle Scholar
  62. Zhou, M., Ru, Z., Luo, Y., Luo, P., Li, Q., Guo, X., Zhou, P.: Male fertility transformation of two-line wheat sterile lines BNS. — J. nucl. agr. Sci. 24: 887–894, 2010.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Y. -Y. Li
    • 1
  • Y. Li
    • 1
    • 2
    • 3
  • Q. -G. Fu
    • 1
  • H. -H. Sun
    • 1
  • Z. -G. Ru
    • 1
  1. 1.Henan Institute of Science and TechnologyXinxiang, HenanP.R. China
  2. 2.Institute of Plant Physiology and EcologySIBS, CASShanghaiP.R. China
  3. 3.Shanghai Yeslab BiotechnologyShanghaiP.R. China

Personalised recommendations