Biologia Plantarum

, Volume 59, Issue 1, pp 123–130 | Cite as

Antioxidative defence under drought stress in a wheat stay-green mutant

  • F. X. Tian
  • M. Zhang
  • X. Wang
  • Y. H. Chen
  • W. Wang
Original Papers


A wheat stay-green mutant, named tasg1, was generated using the mutagen ethyl methane sulphonate applied to wheat (Triticum aestivum L.) cv. HS2. A drought stress was imposed by controlling irrigation and sheltering plants from rain. The antioxidant defence was characterized in the flag leaves of the tasg1 and wild-type (WT). Compared with WT, tasg1 had higher reduced ascorbate/oxidized ascorbate ratio, reduced glutathione/oxidized glutathione ratio, and antioxidant enzyme activities during senescence under both normal and drought stress conditions. The DHAR gene expression remained higher in tasg1 than in WT during the drought stress and tasg1 had a higher antioxidant defence competence which may contribute towards the delayed leaf senescence. The different transcriptional responses of some wheat senescence-associated genes to the drought stress between tasg1 and WT were observed. These results suggest that the competent antioxidative capacity might play an important role in the enhanced drought tolerance in tasg1.

Additional key words

ascorbate-glutathione cycle reactive oxygen species senescence-associated gene Triticum aestivum 



ascorbate peroxidase








dehydroascorbate reductase


drought stress


ethylenediamine tetraacetic acid


ethyl methane sulphonate


glutathione reductase




oxidized glutathione


hydrogen peroxide


monodehydroascorbate reductase


superoxide radical




reactive oxygen species


senescence-associated gene


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.V., Chevone, B.I., Hess, J.L.: Seasonal variation in the antioxidant system of eastern white pine needles. — Plant Physiol. 98: 501–508, 1992.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Arakawa, N., Tsutsumi, K., Sanceda, N.G., Kurata, T., Inagaki, C.: A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. — Agr. biol. Chem. 45: 1289–1290, 1981.CrossRefGoogle Scholar
  3. Arrigoni, O., Dipierro, S., Borraccino, G.: Ascorbate free radical reductase: a key enzyme of the ascorbic acid system. — FEBS Lett. 12: 242–244, 1981.CrossRefGoogle Scholar
  4. Baek, K.H., Skinner, D.Z.: Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. — Plant Sci. 165: 1221–1227, 2003.CrossRefGoogle Scholar
  5. Bartosz, G.: Oxidative stress in plants. — Acta Physiol. Plant. 19: 47–64, 1997.CrossRefGoogle Scholar
  6. Borrell, A.K., Hammer, G.L., Henzel, R.G.: Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. — Crop Sci. 40: 1037–1048, 2000.CrossRefGoogle Scholar
  7. Coker, J.S., Davies, E: Selection of candidate housekeeping controls in tomato plants using EST data. — Biotechniques 35: 740–749, 2003.PubMedGoogle Scholar
  8. Desikan, R., Mackerness, A.H.-S., Hancock, J.T., Neill, S.J.: Regulation of the Arabidopsis transcriptosome by oxidative stress. — Plant Physiol. 127: 159–172, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Drazkiewicz, M., Polit, E.S., Krupa, Z.: Response of ascorbategluthatione cycle to excess copper in Arabidopsis thaliana (L.). — Plant Sci. 164: 195–202, 2003.CrossRefGoogle Scholar
  10. Elstner, E.F., Schempp, H., Preibisch, G., Hippeli, S., Osswald, W.: Biological sources of free radicals. — In: Nohl, H., Esterbauer, H., Rice-Evans, C. (ed.): Free Radicals in the Environment. Pp. 13–44. Richelieu Press, London 1994.Google Scholar
  11. Evans, P.J., Gallesi, D., Mathieu, C., Hernandez, M.J., De Felipe, M.R., Halliwell, B., Puppo, A: Oxidative stress occurs during soybean nodule senescence. — Planta 208: 73–79, 1999.CrossRefGoogle Scholar
  12. Foyer, C.H., Noctor, G.: Oxygen processing in photosynthesis: regulation and signaling. — New Phytol. 146: 359–388, 2000.CrossRefGoogle Scholar
  13. Foyer, C.H., Noctor, G.: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. — Plant Cell 17: 1866–1875, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Gay, C., Gebicki, J.M.: A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. — Anal. Biochem. 284: 217–220, 2000.PubMedCrossRefGoogle Scholar
  15. Gratäo, P.L., Polle, A., Lea, P.J., Azevedo, R.A.: Making the life of heavy metal-stressed plants a little easier. — Funct. Plant Biol. 32: 481–494, 2005.CrossRefGoogle Scholar
  16. Gregersen, P.L., Holm, P.B.: Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). — Plant Biotechnol. J. 5: 192–206, 2007.PubMedCrossRefGoogle Scholar
  17. Hossain, M.A., Asada, K.: Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. — Plant Cell Physiol 25: 85–92, 1984.Google Scholar
  18. Hossain, M.A., Nakano, Y., Asada, K.: Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. — Plant Cell Physiol. 25: 385–395, 1984.Google Scholar
  19. Hui, Z., Tian, F.X., Wang, G.K., Wang, G.P., Wang, W.: The antioxidative defense system is involved in the delayed senescence in a wheat mutant tasg1. — Plant Cell Rep. 31: 1073–1084, 2012.PubMedCrossRefGoogle Scholar
  20. Jiang, H.W., Chen, Y.P., Li, M.R., Xu, X.L., Wu, G.J.: Overexpression of SGR results in oxidative stress and lesion-mimic cell death in rice seedlings. — J. Integr. Plant Biol. 53: 75–387, 2011.Google Scholar
  21. Kang, G.Z., Li, G.Z., Liu, G.Q., Xu, W., Peng, X.Q., Wang, C.Y., Zhu, Y.J., Guo, T.C.: Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. — Biol. Plant. 57: 718–724, 2013.CrossRefGoogle Scholar
  22. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.PubMedCrossRefGoogle Scholar
  23. Møller, I.M., Jensen, P.E., Hansson, A.: Oxidative modifycations to cellular components in plants. — Annu. Rev. Plant Biol. 58: 459–481, 2007.PubMedCrossRefGoogle Scholar
  24. Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249–279, 1998.PubMedCrossRefGoogle Scholar
  25. Puppo, A., Groten, K., Bastian, F., Carzaniga, R., Soussi, M., Lucas, M.M., De Felipe, M.R., Harrison, J., Vanacker, H., Foyer, C.H.: Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. — New Phytol. 165: 683–701, 2005.PubMedCrossRefGoogle Scholar
  26. Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., Blumwald, E.: Delayed leaf senescence induces extreme drought tolerance in a flowering plant. — Proc. nat. Acad. Sci. USA 104: 19631–19636, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Schaedle, M., Bassham, J.A.: Chloroplast glutathione reductase. — Plant Physiol. 59: 1011–1012, 1977.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Sharma, S.S., Dietz, K.J.: The relationship between metal toxicity and cellular redox imbalance. — Trends Plant Sci. 14: 43–50, 2009.PubMedCrossRefGoogle Scholar
  29. Singh, S., Eapen, S., D’souza, S.F.: Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. — Chemosphere 62: 233–246, 2006.PubMedCrossRefGoogle Scholar
  30. Sui, N., Li, M., Liu, X.Y., Wang, N., Fang, W., Meng, Q.W.: Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene. — Photosynthetica 45: 447–454, 2007.CrossRefGoogle Scholar
  31. Thomas, H., Howarth, C.J.: Five ways to stay green. — J. exp. Bot. 51: 329–337, 2000.PubMedCrossRefGoogle Scholar
  32. Tian, F.X., Gong, J.F., Wang, G.P., Wang, G.K., Fan, Z.Y., Wang, W.: Improved drought resistance in a wheat staygreen mutant tasg1 under field conditions. — Biol. Plant. 56: 509–515, 2012.CrossRefGoogle Scholar
  33. Yamaguchi-Shinozaki, K., Kasuga, M., Liu, Q., Nakashima, K., Sakuma, Y., Abe, H., Shinwari, Z.K., Seki, M., Shinozaki, K.: Biological mechanisms of drought stress response. — JIRCAS. — Working Rep. 45: 1–8, 2002.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • F. X. Tian
    • 1
    • 2
  • M. Zhang
    • 1
  • X. Wang
    • 1
  • Y. H. Chen
    • 1
  • W. Wang
    • 1
  1. 1.State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’an, ShandongP.R. China
  2. 2.College of Life Science and TechnologyNanyang Normal UniversityNanyang, HenanP.R. China

Personalised recommendations