Biologia Plantarum

, Volume 59, Issue 1, pp 99–105 | Cite as

Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings

  • L. B. Yuan
  • Z. H. Peng
  • T. T. Zhi
  • Z. Zho
  • Y. Liu
  • Q. Zhu
  • X. Y. Xiong
  • C. M. Ren
Original Papers


To investigate whether brassinosteroids (BR) affects cytokinin (CK)-induced anthocyanin biosynthesis, seedlings of the Arabidopsis dwarf4 (dwf4) mutants including partially suppressing coi1 (psc1) and dwf4-102, which are defective in the BR biosynthesis, and the brassinosteroid-insensitive 1–4 (bri1-4) mutant defective in BR signalling were used for the analysis of CK-induced anthocyanin accumulation and the expression of anthocyanin biosynthetic genes and WD-repeat/Myb/bHLH transcription factors. The results show that the CK-induced anthocyanin accumulation was remarkably reduced in dwf4 and bri1-4 mutants, but distinctly increased in the wild type (WT) treated with BR. Moreover, the CK-induced expressions of the late anthocyanin biosynthetic genes including dihydroflavonol reductase, leucoanthocyanidin dioxygenase, and UDP-glucose: flavonoid-3-O-glucosyl transferase were significantly reduced in bri1-4 and dwf4-102 mutants compared to WT. In addition, the expressions of transcription factors production of anthocyanin pigment 1 (PAP1), glabra 3 (GL3), and enhancer of glabra 3 (EGL3) were induced by CK in WT but not in the bri1-4 and dwf4-102 mutants. These results indicate that BR enhanced the CK-induced anthocyanin biosynthesis by up-regulating the late anthocyanin biosynthetic genes and this regulation might be mediated by the transcription factors PAP1, GL3, and EGL3.

Additional key words

anthocyanin biosynthetic genes BRI1 mutants PSC1/DWF4 WD-repeat/Myb/bHLH transcription factors 





chalcone isomerase


chalcone synthase




dihydroflavonol reductase


enhancer of glabra 3


glabra 3




leucoanthocyanidin dioxygenase


production of anthocyanin pigment 1/2


transparent testa glabra 1


UDP-glucose: flavonoid-3-O-glucosyl transferase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aza-González, C., Herrera-Isidrón, L., Núñez-Palenius, H.G., Martínez de la Vega, O., Ochoa-Alejo, N.: Anthocyanin accumulation and expression analysis of biosynthesisrelated genes during chili pepper fruit development. — Biol. Plant. 57: 49–55, 2013.CrossRefGoogle Scholar
  2. Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant Physiol. Biochem. 47: 1–8, 2009.PubMedCrossRefGoogle Scholar
  3. Cevahir, G., Yentur, S., Eryilmaz, F., Yilmazer, N.: Influence of brassinosteroids on pigment content of Glycine max L. (soybean) grown in dark and light. — J. appl. biol. Sci 2: 23–28, 2008.Google Scholar
  4. Chen, S.M., Li, C.H., Zhu, X.R., Deng, Y.M., Sun, W., Wang, L.S., Chen F.D., Zhang, Z.: The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. — Biol. Plant. 56: 458–464, 2012.CrossRefGoogle Scholar
  5. Choe, S., Dilkes, B.P., Fujioka, S., Takatsuto, S., Sakurai, A., Feldmann, K.A.: The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. — Plant Cell 10: 231–243, 1998.PubMedCentralPubMedGoogle Scholar
  6. Chory, J., Nagpal, P., Peto, C.A.: Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. — Plant Cell 3: 445–459, 1991.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Choudhary, S.P., Yu, J.Q., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.S.P.: Benefits of brassinosteroid crosstalk. — Trends Plant Sci. 17: 594–605, 2012.PubMedCrossRefGoogle Scholar
  8. Cooney, L.J., Van Klink, J.W., Hughes, N.M., Perry, N.B., Schaefer, H.M., Menzies, I.J., Gould, K.S.: Red leaf margins indicate increased polygodial content and function as visual signals to reduce herbivory in Pseudowintera colorata. — New Phytol. 194: 488–497, 2012.PubMedCrossRefGoogle Scholar
  9. Dao, T.T.H., Linthorst, H.J.M., Verpoorte, R.: Chalcone synthase and its functions in plant resistance. — Phytochem. Rev. 10: 397–412, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Das, P.K., Shin, D.H., Choi, S.B., Park, Y.I.: Sugar-hormone cross-talk in anthocyanin biosynthesis. — Mol. Cells 34: 501–507, 2012a.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Das, P.K., Shin, D.H., Choi, S.B., Yoo, S.D., Choi, G., Park, Y.I.: Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. — Mol. Cells 34: 93–101, 2012b.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Deikman, J., Hammer, P.E.: Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. — Plant Physiol. 108: 47–57, 1995.PubMedCentralPubMedGoogle Scholar
  13. Farooq, M., Wahid, A., Basra, S.M.A., Islam-ud-Din.: Improving water relations and gas exchange with brassinosteroids in rice under drought stress. — J. Agron. Crop Sci. 195: 262–269, 2009.CrossRefGoogle Scholar
  14. Gendron, J.M., Haque, A., Gendron, N., Chang, T., Asami, T., Wang, Z.Y.: Chemical genetic dissection of brassinosteroidethylene interaction. — Mol. Plant 1: 368–379, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gonzalez, A., Zhao, M., Leavitt, J.M., Lloyd A.M.: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. — Plant J. 53: 814–827, 2008.PubMedCrossRefGoogle Scholar
  16. Gould, K.S.: Nature’s Swiss ar my knife: the diverse protective roles of anthocyanins in leaves. — J. Biomed. Biotechnol. 5: 314–320, 2004.CrossRefGoogle Scholar
  17. Gould, K.S., Dudle, D.A., Neufeld, H.S.: Why some stems are red: cauline anthocyanins shield photosystem II against high light stress. — J. exp. Bot. 61: 2707–2717, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Grotewold, E.: The genetics and biochemistry of floral pigments. — Annu. Rev. Plant Biol. 57: 761–780, 2006.PubMedCrossRefGoogle Scholar
  19. Guo, J., Hu, X., Duan, R.: Interactive effects of cytokinins, light, and sucrose on the phenotypes and the syntheses of anthocyanins and lignins in cytokinin overproducing transgenic Arabidopsis. — J. Plant Growth Regul. 24: 93–101, 2005.CrossRefGoogle Scholar
  20. Hatier, J.H.B., Clearwater, M.J., Gould, K.S.: The Functional significance of black-pigmented leaves: photosynthesis, photoprotection and productivity in Ophiopogon planiscapus ‘Nigrescens’. — PLoS ONE 8: e67850, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hatier, J.H.B., Gould, K.S.: Foliar anthocyanins as modulators of stress signals. — J. theor. Biol. 253: 625–627, 2008.PubMedCrossRefGoogle Scholar
  22. Holton, T.A., Cornish, E.C.: Genetics and biochemistry of anthocyanin biosynthesis. — Plant Cell 7: 1071–1083, 1995.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Huang, Y., Han, C., Peng, W., Peng, Z., Xiong, X., Zhu, Q., Gao, B., Xie, D., Ren, C.: Brassinosteroid negatively regulates jasmonate inhibition of root growth in Arabidopsis. — Plant Signal. Behav. 5: 140–142, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Jenkins, G.I., Long, J.C., Wade, H.K., Shenton, M.R., Bibikova, T.N.: UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. — New Phytol. 151: 121–131, 2001.CrossRefGoogle Scholar
  25. Jeong, S.W., Das, P.K., Jeoung, S.C., Song, J.Y., Lee, H.K., Kim, Y.K., Kim, W.J., Park, Y.I., Yoo, S.D., Choi, S.B., Choi, G., Park, Y.I.: Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. — Plant Physiol. 154: 1514–1531, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Koes, R.E., Quattrocchio, F., Mol, J.N.M.: The flavonoid biosynthetic pathway in plants: function and evolution. — Bioessays 16: 123–132, 1994.CrossRefGoogle Scholar
  27. Krishna, P.: Brassinosteroid-mediated stress responses. — J. Plant Growth Regul. 22: 289–297, 2003.PubMedCrossRefGoogle Scholar
  28. Kwon, Y., Oh, J.E., Noh, H., Hong, S.W., Bhoo, S.H., Lee, H.: The ethylene signaling pathway has a negative impact on sucrose-induced anthocyanin accumulation in Arabidopsis. — J. Plant Res. 124: 193–200, 2011.PubMedCrossRefGoogle Scholar
  29. Laxmi, A., Paul, L.K., Peters, J.L., Khurana, J.P.: Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity. — Plant mol. Biol. 56: 185–201, 2004.PubMedCrossRefGoogle Scholar
  30. Loreti, E., Povero, G., Novi, G., Solfanelli, C., Alpi, A., Perata, P.: Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. — New Phytol. 179: 1004–1016, 2008.PubMedCrossRefGoogle Scholar
  31. Luan, L.Y., Zhang, Z.W., Xi, Z.M., Huo, S.-S., Ma, L.N.: Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. — S. Afr. J. Enol. Viticult. 34: 196–203, 2013.Google Scholar
  32. Luccioni, L.G., Oliverio, K.A., Yanovsky, M.J., Boccalandro, H.E., Casal, J.J.: Brassinosteroid mutants uncover fine tuning of phytochrome signaling. — Plant Physiol. 128: 173–181, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Mehdy, M.C., Lamb, C.J.: Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. — EMBO J. 6: 1527–1533, 1987.PubMedCentralPubMedGoogle Scholar
  34. Nagira, Y., Ikegami, K., Koshiba, T., Ozeki, Y.: Effect of ABA upon anthocyanin synthesis in regenerated Torenia shoots. — J Plant Res. 119: 137–144, 2006.PubMedCrossRefGoogle Scholar
  35. Nakamoto, D., Ikeura, A., Asami, T., Yamamoto, K.T.: Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the Arabidopsis mutant nonphototropic hypocotyl 4. — Plant Physiol. 141: 456–464, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., Tax, F.E.: Brassinosteroid insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. — Plant Physiol. 121: 743–752, 1999.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Pelletier, M.K., Murrell, J.R., Shirley, B.W.: Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis (further evidence for differential regulation of “early” and “late” genes). — Plant Physiol. 113: 1437–1445, 1997.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Peng, Z., Han, C., Yuan, L., Zhang, K., Huang, H., Ren, C.: Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. — J. Integr. Plant Biol. 53: 632–640, 2011.PubMedCrossRefGoogle Scholar
  39. Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C., Xie, D.: The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. — Plant Cell 23: 1795–1814, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Ren, C., Han, C., Peng, W., Huang, Y., Peng, Z., Xiong, X., Zhu, Q., Gao, B., Xie, D.: A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. — Plant Physiol. 151: 1412–1420, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Sasse, J.M.: Physiological actions of brassinosteroids: an update. — J. Plant Growth Regul. 22: 276–288, 2003.PubMedCrossRefGoogle Scholar
  42. Shan, X., Zhang, Y., Peng, W., Wang, Z., Xie, D.: Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. — J. exp. Bot. 60: 3849–3860, 2009.PubMedCrossRefGoogle Scholar
  43. Shin, D.H., Choi, M., Kim, K., Bang, G., Cho, M., Choi, S.B., Choi, G., Park, Y.I.: HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis, — FEBS Lett. 587: 1543–1547, 2013.PubMedCrossRefGoogle Scholar
  44. Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., Perata, P.: Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. — Plant Physiol. 140: 637–646, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Springob, K., Nakajima, J., Yamazaki, M., Saito, K.: Recent advances in the biosynthesis and accumulation of anthocyanins. — Natur. Prod. Rep. 20: 288–303, 2003.CrossRefGoogle Scholar
  46. Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B., Thomas, M.R.: Grapes on steroids. Brassinosteroids are involved in grape berry ripening. — Plant Physiol. 140: 150–158, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., Rédei, G.P., Nagy, F., Schell, J., Koncz, C.: Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. — Cell 85: 171–182, 1996.PubMedCrossRefGoogle Scholar
  48. Teng, S., Keurentjes, J., Bentsink, L., Koornneef, M., Smeekens, S.: Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. — Plant Physiol. 139: 1840–1852, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Treutter, D.: Significance of flavonoids in plant resistance and enhancement of their biosynthesis. — Plant Biol. 7: 581–591, 2005.PubMedCrossRefGoogle Scholar
  50. Winkel-Shirley, B.: Biosynthesis of flavonoids and effects of stress. — Curr. Opin. Plant Biol. 5: 218–223, 2002.PubMedCrossRefGoogle Scholar
  51. Yokota, T.: The structure, biosynthesis and function of brassinosteroids. — Trends Plant Sci. 2: 137–143, 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • L. B. Yuan
    • 1
    • 2
  • Z. H. Peng
    • 1
    • 2
  • T. T. Zhi
    • 1
    • 2
  • Z. Zho
    • 1
    • 2
  • Y. Liu
    • 1
    • 2
  • Q. Zhu
    • 3
  • X. Y. Xiong
    • 1
    • 3
  • C. M. Ren
    • 1
    • 2
  1. 1.Hunan Provincial Key Laboratory of Crop Germplasm Innovation and UtilizationHunan Agricultural UniversityChangshaP.R. China
  2. 2.College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaP.R. China
  3. 3.College of Horticulture and LandscapeHunan Agricultural UniversityChangshaP.R. China

Personalised recommendations