Biologia Plantarum

, Volume 58, Issue 4, pp 611–617 | Cite as

Exogenous sucrose can enhance tolerance of Arabidopsis thaliana seedlings to salt stress

  • Z. B. Qiu
  • Y. F. Wang
  • A. J. Zhu
  • F. L. Peng
  • L. S. Wang
Original Papers


To investigate the physiological mechanisms of salt stress mitigated by exogenous sucrose, Arabidopsis thaliana seedlings grown on Murashige and Skoog medium were treated with 3 % (m/v) sucrose combined with 75, 150, and 225 mM NaCl for 3 d. Our results show that increased salinity significantly decreased the survival rate, fresh mass, content of proteins, chlorophyll a (Chl a), and chlorophyll b (Chl b), and activities of antioxidant enzymes, whereas enhanced the content of malondialdehyde. However, the treatment with sucrose significantly enhanced salt stress tolerance in the Arabidopsis seedlings by decreasing lipid peroxidation and increasing the activities of superoxide dismutase, peroxidase, and catalase, the content of proteins, Chl a, Chl b, anthocyanins, and the transcription of genes involved in anthocyanin biosynthesis. Thus, sucrose might reduce ROS-induced oxidative damage by enhancing activities of antioxidant enzymes and the content of anthocyanins, thereby preventing membrane peroxidation and denaturation of biomolecules.

Additional key words

anthocyanins acorbate peroxidase chlorophyll catalase gene expression malondialdehyde NaCl peroxidase superoxide dismutase 



ascorbate peroxidase






gene encoding dihydroflavonol 4-reductase


leucoanthocyanidin dioxygenase




Murashige and Skoog


gene encoding transcription factor


nitroblue tetrazolium




reactive oxygen species


superoxide dismutase


thiobarbituric acid


gene encoding transparent testa 8


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnon, D.I.: Copper enzyme in isolated chloroplasts and polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  3. Cakmak I., Marschner H.: Magnesium deficiency and high light intensity on enhance activities of superoxide dismutase, peroxidase and glutathione reductase in bean leaves. — Plant Physiol. 98: 1222–1227, 1992.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Daiponmak, W., Theerakulpisut, P., Thanonkao, P., Vanavichit, A., Prathetha, P.: Changes of anthocyanin cyaniding-3-glucoside content and antioxidant activity in Thai rice varieties under salinity stress. — Science Asia 36: 286–291, 2010.CrossRefGoogle Scholar
  5. Das, P.K., Shin, D.H., Choi1, S.B., Park Y.: Sugar-hormone cross-talk in anthocyanin biosynthesis. — Mol. Cells 34: 501–507, 2010.CrossRefGoogle Scholar
  6. Flowers, T.J., Yeo, A.R.: Breeding for salinity resistance in crop plants: where next? — Aust. J. Plant Physiol. 22: 875–884, 1995.CrossRefGoogle Scholar
  7. Giannopolitis, C.N., Ries, S.K.: Superoxide dismutase. I. Occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Gould, K.S.: Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. — J. Biomed. Biotechnol. 5: 314–320, 2004.CrossRefGoogle Scholar
  9. Hossain, M.A., Kim, S., Kim, K.H., Lee, S.J., Lee H.: Flavonoid compounds are enriched in lemon balm (Melissa officinalis) leaves by a high level of sucrose and confer increased antioxidant activity. — Hortscience 44: 1907–1913, 2009.Google Scholar
  10. Lei, B., Huang, Y., Xie, J.J., Liu, Z.X., Zhen, A., Fan, M.L., Bie, Z.L.: Increased cucumber salt tolerance by grafting on pumpkin rootstock and after application of calcium. — Biol. Plant. 58: 179–184, 2014.CrossRefGoogle Scholar
  11. Li, J.T., Qiu, Z.B., Zhang, X.W., Wang L.S.: Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. — Acta Physiol. Plant. 33: 835–842, 2011.CrossRefGoogle Scholar
  12. Loreti, E., Poggi, A., Novi, G., Alpi, A., Perata, P.: A genomewide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. — Plant Physiol. 137: 1130–1138, 2005.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Meng, X., Yin, B., Feng, H.L., Zhang, S., Liang, X.Q., Meng, Q.W.: Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress. — Biol. Plant. 58: 121–130, 2014.CrossRefGoogle Scholar
  14. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R.: Reactive oxygen species homeostasis and signaling during drought and salinity stresses. — Plant Cell Environ. 33: 453–467, 2010.PubMedCrossRefGoogle Scholar
  15. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.PubMedCrossRefGoogle Scholar
  16. Moustakas, M., Sperdouli, I., Kouna, T., Antonopoulou, C., Therios, I.: Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. — Plant Growth Regul. 65: 315–325, 2011.CrossRefGoogle Scholar
  17. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  18. Neill, S.O., Gould, K.S.: Anthocyanins in leaves: light attenuators or antioxidants ? — Funct. Plant Biol. 30: 865–873, 2003.CrossRefGoogle Scholar
  19. Oh, J.E., Kim, Y.H., Kim, J.H., Kwon, Y.R., Lee, H.: Enhanced level of anthocyanin leads to increased salt tolerance in Arabidopsis PAP1-D plants upon sucrose treatment. — J. korean Soc. appl. Biol. 1: 79–88, 2011.Google Scholar
  20. Ohto, M., Onai, K., Furukawa, Y., Aoki, E., Araki, T., Nakamura, K.: Effects of sugar on vegetative development and floral transition in Arabidopsis. — Plant Physiol. 127: 252–261, 2001.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Park, N.L., Xu, H., Li, X., Jang, I.H., Park, S.H., Ahn, G.H., Lim, Y.P., Kim, S.J., Park, S.U.: Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus). — J. Agr. Food Chem. 59: 6034–6039, 2011.CrossRefGoogle Scholar
  22. Predieri, S., Norman, H.A., Krizek, D.T.: Influence of UV-B radiation on membrane lipid composition and ethylene of evolution in ‘Doyenne d’Hiver’ pear shoots grown in vitro under different photosynthetic photon fluxes. — Environ. exp. Bot. 35: 151–160, 1995.CrossRefGoogle Scholar
  23. Qiu, Z.B., Li, Q., Bi, Z.Z., Yue, M.: Hydrogen peroxide acts as a signal molecule in CO2 laser pretreatment-induced osmotic tolerance in wheat seedlings. — Plant Soil Environ. 9: 403–408, 2011.Google Scholar
  24. Ramel, F., Sulmon, C., Cabello-Hurtado, F., Taconnat, L., Martin-Magniette, M.L., Renou, J.P., Amrani, A.E., Couée, I., Gouesbet, G.: Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucroseinduced tolerance. — BMC Genom. 8: 450, 2007.CrossRefGoogle Scholar
  25. Ronchi, A., Farina, G., Gozzo, F., Tonelli, C.: Effects of a triazolic fungicide on maize plant metabolism: modifications of transcript abundance in resistance-related pathways. — Plant Sci. 130: 51–62, 1997.CrossRefGoogle Scholar
  26. Smeekens, S., Ma, J.K., Hanson, J., Rolland, F.: Sugar signals and molecular networks controlling plant growth. — Curr. Opin. Plant Biol. 13: 274–279, 2010.PubMedCrossRefGoogle Scholar
  27. Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., Perata, P.: Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. — Plant Physiol. 140: 637–646, 2006.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Sperdouli, I., Moustakas, M.: Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. — J. Plant Physiol. 169: 577–585, 2012.PubMedCrossRefGoogle Scholar
  29. Sulmon, C., Gouesbet, G., Binet, F., Martin-Laurent, F., El Amrani, A., Couée, I.: Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana. — Environ. Pollut. 145: 507–515, 2007.PubMedCrossRefGoogle Scholar
  30. Teng, S., Keurentjes, J., Bentsink, L., Koornneef, M., Smeekens, S.: Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. — Plant Physiol. 139: 1840–1852, 2005.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Wind, J., Smeekens, S., Hanson, J.: Sucrose: metabolite and signaling molecule. — Phytochemistry 71: 1610–1614, 2010.PubMedCrossRefGoogle Scholar
  32. Xie, Z.X., Duan, L.S., Tian, X.L., Wang, B.M., Eneji, A.E., Li, Z.H.: Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radicalscavenging activity. — J. Plant Physiol. 165: 375–384, 2008.PubMedCrossRefGoogle Scholar
  33. Zhang, J.X., Kirham, M.B.: Drought stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. — Plant Cell Physiol. 35: 785–791, 1994.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Z. B. Qiu
    • 1
  • Y. F. Wang
    • 1
  • A. J. Zhu
    • 1
  • F. L. Peng
    • 1
  • L. S. Wang
    • 1
  1. 1.College of Life ScienceHenan Normal UniversityXinxiangP.R. China

Personalised recommendations