Biologia Plantarum

, Volume 58, Issue 1, pp 29–38 | Cite as

Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization

  • C. E. Aragón
  • C. Sánchez
  • J. Gonzalez-Olmedo
  • M. Escalona
  • L. Carvalho
  • S. Amâncio
Original Papers


The current work compared the physiological characteristics of plantain (Musa AAB) plantlets micropropagated in temporary immersion bioreactors (TIB) and on a gelled medium (GM). The plantlets were evaluated during in vitro growth (in the shoot elongation phase) and at the end of ex vitro acclimatization. TIB improved rooting and gave rise to longer shoots and higher dry mass. Respiration rate was the highest at the beginning of shoot elongation in both the TIB and GM plantlets. Photosynthetic rate in TIB was significantly higher than in GM from the midpoint of acclimatization, whereas a pyruvate kinase (PK) activity was lower. Starch accumulation was ca. two fold higher in corms than in leaves and always higher in the TIB than GM plantlets. The higher expression of genes coding for carbon metabolism enzymes PK and phosphoenolpyruvate carboxylase (PEPC) in TIB than in PM indicates a more important role of an autotrophic metabolism in the TIB plantlets when compared to the GM ones. The accumulated reserves were used during the first days of acclimatization leading to the higher survival rates and to the better plant quality of the TIB plantlets.

Additional key words

acclimatization ethylene Musa spp. PEPC peroxiredoxins photosynthesis 





gelled medium


phosphoenolpyruvate carboxylase


pyruvate kinase


photosynthetic photon flux density




starch synthase


reactive oxygen species


temporary immersion bioreactors


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aragón, C., Carvalho, L., González, J., Escalona, M., Amâncio, S.: Ex vitro acclimatization of plantain plantlets micropropagated in temporary immersion bioreactor. — Biol.Plant. 54: 237–244, 2010.CrossRefGoogle Scholar
  2. Aragón, C., Escalona, M., Capote, I., Pina, D., Cejas, I., Rodríguez, R., Cañal, M., Sandoval, J., Roels, S., Debergh, P., González-Olmedo, J.: Photosynthesis and carbon metabolism in plantain (Musa AAB) growing in temporary immersion bioreactor (TIB) and ex vitro acclimatization. — In Vitro cell. dev. Biol. Plant 41: 550–554, 2005.CrossRefGoogle Scholar
  3. Aragón, C., Escalona, M., Capote, I., Pina, D., Cejas, I., Rodríguez, R., Cañal, M., Sandoval, J., Roels, S., Debergh, P., González-Olmedo, J.: [Acclimatization of plantain “CEMSA {ie36-1} (AAB)” plants propagated in temporary immersion system. The role of starch on the acclimatization process.] — INFOMUSA 1–2: 32–35, 2006. [In Span.]Google Scholar
  4. Aragón, C., Escalona, M., Rodriguez, R., Cañal, M., Capote, I., Pina, D., González, J.: Effect of sucrose, light, and carbon dioxide on plantain micropropagation in temporary immersion bioreactors. — In Vitro cell. dev. Biol. Plant 46: 89–94, 2009.CrossRefGoogle Scholar
  5. Ba’ková, P., Pospíšilová, J., Synková, H.: Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer. — Biol. Plant. 52: 413–422, 2008.CrossRefGoogle Scholar
  6. Bello-Pérez, L., Contreras-Ramos, S., Romero-Manilla, R., Solorza-Feria, J., Jiménez-Aparicio, A.: [Functional chemistry properties of modified starch from plantain Musa paradisiaca L. (male clone).] — Agrochemical 36: 169–180, 2002. [In Span.]Google Scholar
  7. Bradford, M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. — Anal.Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  8. Buddendorf-Joosten, J., Woltering, E.: Components of the gaseous environment and their effects on plant growth and development in vitro. — Plant Growth Regul. 15: 1–16, 1994.CrossRefGoogle Scholar
  9. Capellades, M., Lemeur, L., Debergh, P.: Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa culture in vitro. — Plant Cell Tissue Organ Cult. 25: 21–26, 1991.CrossRefGoogle Scholar
  10. Carvalho, L., Amâncio, S.: Effect of ex vitro conditions on growth and acquisition of autotrophic behaviour during the acclimatization of chestnut regenerated in vitro. — Sci. Hort. 95: 151–164, 2002.CrossRefGoogle Scholar
  11. Carvalho, L., Santos, P., Amâncio, S.: Effects of light intensity and CO2 concentration during the acclimatization of in vitro grapevine. — Vitis 41: 1–6, 2002.Google Scholar
  12. Carvalho, L.C., Vilela, B.J., Vidigal, P., Mullineaux, P.M., Amâncio, S.: Activation of the ascorbate-glutathione cycle is an early response of micropropagated Vitis vinifera L. explants transferred to ex vitro. — Int. J. Plant Sci. 167: 759–770, 2006.CrossRefGoogle Scholar
  13. Cayón, G.: [Evolution of photosynthesis, transpiration and chlorophyll during the plantain (Musa AAB Simmonds) leaf growth.] — INFOMUSA 10: 12–15, 2001. [In Span.]Google Scholar
  14. Chang, S., Puryear, J., Cairney, J.: A simple and efficient method for isolating RNA from pine trees. — Plant mol. Biol. Rep. 11: 113–116, 1993.CrossRefGoogle Scholar
  15. Coito, J., Rocheta, M., Carvalho, L., Amâncio, S.: Microarraybased uncovering reference genes for quantitative real time PCR in grapevine under abiotic stress. — BMC Res. Note 5: 220, 2012.CrossRefGoogle Scholar
  16. Dias, M.C., Pinto, G., Correia, C.M., Moutinho-Pereira, J., Silva, S., Santos, C.: Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. — Biol. Plant. 57: 33–40, 2013.CrossRefGoogle Scholar
  17. Dietz, K.-J.: Plant peroxiredoxins. — Annu. Rev. Plant Biol. 54: 93–107, 2003.PubMedCrossRefGoogle Scholar
  18. Dietz, K.-J.: Peroxiredoxins in plants and cyanobacteria. — Antioxid. Redox Signal. 15: 1129–1159, 2011.PubMedCrossRefGoogle Scholar
  19. Dietz, K.-J., Horling, F., Konig, J., Baier, M.: The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. — J. exp. Bot. 53: 1321–1329, 2002.PubMedCrossRefGoogle Scholar
  20. Escalona, M., Cejas, I., Gonzalez-Olmedo, J., Capote, I., Roels, S., Cañal, M.J., Rodríguez, R., Sandoval, J., Debergh, P.: [The effect of meta-topolin on plantain propagation using a temporary immersion bioreactor.] — INFOMUSA 12: 28–30, 2003. [In Span.]Google Scholar
  21. Escalona, M., Lorenzo, J., González, B., Daquinta, M., Borroto, C., González, J., Desjardins, Y.: Pineapple micropropagation in temporary immersion systems. — Plant Cell. Rep. 18: 743–748, 1999.CrossRefGoogle Scholar
  22. Etienne, E., Berthouly, M.: Temporary immersion systems in plant micropropagation. — Plant Cell Tissue Organ Cult. 69: 215–231, 2002.CrossRefGoogle Scholar
  23. Ferreira, R., Franco, E., Teixeira, A.: Covalent dimerization of ribulosebisfosphate carboxylase subunits by UV radiation. — Biochem. J. 318: 227–234, 1996.PubMedGoogle Scholar
  24. Geigenberger, P., Stitt, M.: A “futile” cycle of sucrose synthesis and degradation is involved in regulating partitioning between sucrose, starch and respiration in cotyledons of germinating Ricinus communis L. seedlings when phloem transport is inhibited. — Planta 185: 81–90, 1991.PubMedGoogle Scholar
  25. Hall, M., Kapuya, J., Sivakumaran, S., John, A.: The role of ethylene in the response of plants to stress. — Pestic. Sci. 8: 217–223, 2006.CrossRefGoogle Scholar
  26. Hazarika, B.: Acclimatization of tissue-cultured plants. — Curr. Sci. 85: 1704–1712, 2003.Google Scholar
  27. Hdider, C., Desjardins, Y.: Effects of sucrose on photosynthesis and phosphoenolpyruvate carboxylase activity of in vitro culture strawberry plantlets. — Plant Cell Tissue Organ Cult. 36: 27–33, 1994.CrossRefGoogle Scholar
  28. Laemmli, U.K.: Cleavage of structural proteins during the heat of bacteriophage T4. — Nature 227: 680–685, 1970.PubMedCrossRefGoogle Scholar
  29. Larema, L., Ferreira, A., Witt, C., Carnevalli, L., Fontes, R., Jardim, E., Campos, W.: Photoautotrophic propagation of Brazilian ginseng [Pfaffiaglomerata (Spreng.) Pedersen]. — Plant Cell Tissue Organ Cult. 110: 227–238, 2012.CrossRefGoogle Scholar
  30. Le, Q.V., Samsom, G., Desjardins, Y.: Opposite effects of exogenous sucrose on growth, photosynthesis and carbon metabolism of in vitro plantlets of tomato (L. esculentum Mill.) grown under two levels of irradiances and CO2 concentrations. — J. Plant Physiol. 158: 599–605, 2001.CrossRefGoogle Scholar
  31. Lin, M., Turpin, D., Plaxton, W.: Pyruvate kinase isoenzymes from green alga Selenastrum minutum. I. Purification and physical and immunological characterization. — Arch. Biochem. Biophys. 269: 219–227, 1989.PubMedCrossRefGoogle Scholar
  32. Lorenzo, J., Blanco, M., Peláez, O., González, A., Cid, M., Iglesias, A., González, B., Escalona, M., Espinosa, P., Borroto, C.: Sugarcane micropropagation and phenolic excretion. — Plant Cell Tissue Organ Cult. 65: 1–8, 2001.CrossRefGoogle Scholar
  33. Ma, S., Shii, C.: Growing banana plantlets from adventitious buds. — J. chin. Soc. hort. Sci. 20: 6–12, 1974.Google Scholar
  34. Martín, A., Casas, J., Piqueras, A.: Nitrogen assimilating enzymes during acclimatization of micropropagated Musa sp. plants. — Acta hort. 812: 421–42, 2009.Google Scholar
  35. Moreira, F., Borghezan, M., Lima, A.: Assessment of the carbon dissimilation methodology in the in vitro growth of the ‘Paulsen 1103’ grapevine. — Crop Breed. appl. Biotechnol. 3: 157–162, 2003.Google Scholar
  36. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays whit tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  37. Nakamura, S., Nitta, Y., Watanabe, M., Goto, Y.: Analysis of leaflet shape and area for improvement of leaf area estimation method for sago palm (Metroxylon sagu Rottb.). — Plant Prod. Sci. 8: 27–31, 2005.CrossRefGoogle Scholar
  38. Outlaw, J., De Vlieghere-He, X.: Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean. — Plant Physiol. 126: 1716–1724, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Panis, B., Thinh, N.: Cryopreservation of Musa Germplasm. — INIBAP Technical Guidelines 5. INIBAP, Montpellier 2001.Google Scholar
  40. Pérez, C.: Statistical Methods in SPSS 12. Applications to Data Analysis. — Prentice Hall, Madrid 2005.Google Scholar
  41. Perveen, S., Anis, M., Aref, I.M.: Lipid peroxidation, H2O2 content, and antioxidants during acclimatization of Abrus precator to ex vitro conditions. — Biol. Plant. 57: 417–424, 2013.CrossRefGoogle Scholar
  42. Ramagli, L.: Quantifying protein in 2D PAGE solubilization buffers. — In: Link A.J. (ed): Methods in Molecular Biology — 2D Proteome Analysis Protocols. Pp. 112. Humana Press, Totowa 1999.Google Scholar
  43. Roels, S., Escalona, M., Cejas, I., Noceda, C., Rodríguez, R., Cañal, M., Sandoval, J., Debergh, P.: Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. — Plant Cell Tissue Organ Cult. 82: 57–66, 2005.CrossRefGoogle Scholar
  44. Roels, S., Noceda, C., Escalona, M., Sandoval, J., Cañal, M., Rodríguez, R., Debergh, P.: The effects of headspace renewal in a temporary immersion biorreactor on plantain (Musa AAB) shoot proliferation and quality. — Plant Cell Tissue Organ Cult. 84: 138–146, 2006.CrossRefGoogle Scholar
  45. Rouhier, N., Gelhaye, E., Gualberto, J.M., Jordy, M.N., De Fay, E., Hirasawa, M., Duplessis, S., Lemaire, S.D., Frey, P., Martin, F., Manieri, W., Knaff, D.B., Jacquot, J.-P.: Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense. — Plant Physiol. 134: 1027–1038, 2004.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Siegel, G., Stitt, M.: Partial purification of two forms of spinach leaf sucrose-phosphate synthase which differ in their kinetic properties. — Plant Sci. 66: 205–210, 1990.CrossRefGoogle Scholar
  47. Stearns, J., Glick, B.: Transgenic plants with altered ethylene biosynthesis or perception. — Biotechnol. Adv. 21: 193–210, 2003.PubMedCrossRefGoogle Scholar
  48. Teisson, C., Alvard, D.: A new concept of plant in vitro cultivation liquid medium: temporary immersion. — In: Terzi, M., Celia, R., Falavigna, A. (ed.): Current Issues in Plant Molecular and Cellular Biology. Pp. 105–110. Kluwer Academic Publishers, Dordrecht 1995.CrossRefGoogle Scholar
  49. Thomas, W., Rufty, J., Steven, C.: Changes in starch formation and activities of sucrose phospate synthase and cytoplasmic fructose-1-6-bisphosphatase in response to source-sink alterations. — Plant Physiol. 72: 474–480, 1983.CrossRefGoogle Scholar
  50. Van Handel, E.: Direct microdetermination of sucrose. — Anal. Biochem. 22: 280–283, 1968.PubMedCrossRefGoogle Scholar
  51. Van Huylenbroeck, J., Piqueras, A., Debergh, P.C.: The evolution of photosyntesis capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plantlets. — Plant Sci. 155: 59–66, 2000.PubMedCrossRefGoogle Scholar
  52. Woodrow, L., Thompson, R., Grodzinski, B.: Effects of ethylene on photosynthesis and partitioning in tomato, Lycopersicon esculentum Mill. — J. exp. Bot. 39: 667–684, 1988.CrossRefGoogle Scholar
  53. Ziv, M.: Simple bioreactors for mass propagation of plantlets. — Plant Cell Tissue Organ Cult. 81: 277–285, 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • C. E. Aragón
    • 1
    • 2
  • C. Sánchez
    • 3
  • J. Gonzalez-Olmedo
    • 2
  • M. Escalona
    • 2
  • L. Carvalho
    • 1
  • S. Amâncio
    • 1
  1. 1.Instituto Superior de AgronomiaUniversidade Técnica de LisboaLisboaPortugal
  2. 2.Centro de BioplantasUniversidad de Ciego de ÁvilaCiego de ÁvilaCuba
  3. 3.Instituto Nacional de Investigação Agrária e VeterináriaOeirasPortugal

Personalised recommendations