Biologia Plantarum

, Volume 58, Issue 1, pp 9–17 | Cite as

Brassinosteroids and their role in response of plants to abiotic stresses

  • Q. Fariduddin
  • M. Yusuf
  • I. Ahmad
  • A. Ahmad


Brassinosteroids (BRs) are polyhydroxylated steroidal plant hormones that play pivotal role in the regulation of various plant growth and development processes. BR biosynthetic or signaling mutants clearly indicate that these plant steroids are essential for regulating a variety of physiological processes including cellular expansion and proliferation, vascular differentiation, male fertility, timing senescence, and leaf development. Moreover, BRs regulate the expression of hundreds of genes, affect the activity of numerous metabolic pathways, and help to control overall developmental programs leading to morphogenesis. On the other hand, the potential application of BRs in agriculture to improve growth and yield under various stress conditions including drought, salinity, extreme temperatures, and heavy metal (Cd, Cu, Al, and Ni) toxicity, is of immense significance as these stresses severely hamper the normal metabolism of plants. Keeping in mind the multifaceted role of BRs, an attempt has been made to cover the various aspects mediated by BRs particularly under stress conditions and a possible mechanism of action of BRs has also been suggested.

Additional key words

antioxidant system drought heavy metals high temperature low temperature oxidative stress photosynthesis 











brassinosteroids insensitive I












leucine rich repeat


mitochondrial small heat shock protein


non-expressor of pathogenesis related genes 1






pathogenesis related 1


photosystem II


reactive oxygen species

S/T kinase

serine/threonine kinase


superoxide dismutase






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullahi, B.A., Gu, X., Gan, Q., Yang, Y.: Brassinolide amelioration of aluminium toxicity in mung bean seedling growth. — J. Plant. Nutr. 26: 1725–1734, 2003.CrossRefGoogle Scholar
  2. Ahammed, G.J., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Yu, J.Q.: Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. — Biol. Plant. 57: 154–158, 2013.CrossRefGoogle Scholar
  3. Alam, M.M., Hayat, S., Ali, B., Ahmad, A.: Effect of 28-homobrassinolide on nickel induced changes in Brassica juncea. — Photosynthetica 45: 139–142, 2007.CrossRefGoogle Scholar
  4. Ali, B., Hasan, S.A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., Ahmad, A.: A role of brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L.) Wilczek. — Environ. exp. Bot. 62: 153–159, 2008a.CrossRefGoogle Scholar
  5. Ali, B., Hayat, S., Ahmad, A.: 28-homobrassinolide ameliorates the saline stress in Cicer arietinum L. — Environ. exp. Bot. 59: 217–223, 2007.CrossRefGoogle Scholar
  6. Ali, Q., Athar, H.R., Ashraf, M.: Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. — Plant. Growth. Regul. 56: 107–116, 2008b.CrossRefGoogle Scholar
  7. Allen, D.J., Ort, D.R.: Impact of chilling temperatures on photosynthesis in warm-climate plants. — Trends Plant. Sci. 6: 36–42, 2001.PubMedCrossRefGoogle Scholar
  8. Anuradha, S., Rao, S.S.R.: Effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. — Plant Soil Environ. 53: 465–472, 2007a.Google Scholar
  9. Ashraf, M., Akram, N.A., Arteca, R.N., Foolad, M.R.: The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. — Crit. Rev. Plant. Sci. 29: 162–190, 2010.CrossRefGoogle Scholar
  10. Ashraf, M., Foolad, M.R.: Roles of glycinebetaine and proline in improving plant abiotic stress resistance. — Environ. exp. Bot. 59: 206–216, 2007.CrossRefGoogle Scholar
  11. Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant. Physiol. Biochem. 47: 1–8, 2009.PubMedCrossRefGoogle Scholar
  12. Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physiol. 31: 491–543, 1980.CrossRefGoogle Scholar
  13. Caño-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-García, S., Cheng, J.C., Nam, K.H., Li, J., Chory, J.: BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. — Development 131: 5341–5351, 2004.PubMedCrossRefGoogle Scholar
  14. Cao, S., Xu, Q., Cao, Y., Qian, K., An, K., Zhu, Y., Binzeng, H., Zhao, H., Kuai, B.: Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. — Physiol. Plant. 123: 57–66, 2005.CrossRefGoogle Scholar
  15. Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan, N.B.S., Sangwan, R.S.: Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I. Molecular, cellular and physiological characterization of the Arabidopsis bul1 mutant, defective in the Δ(7)-sterol-C5-desaturation step leading to brassinosteroids biosynthesis. — Planta 212: 659–672, 2001.PubMedCrossRefGoogle Scholar
  16. Choe, S.: Brassinosteroid biosynthesis and inactivation. — Physiol. Plant. 126: 539–548, 2006.CrossRefGoogle Scholar
  17. Choudhary, S.P., Yu, J.Q., Yamaguchi-Shinozaki, K., Shinozaki, K., Lam-Son, P.T.: Benefits of brassinosteroid crosstalk. — Trends Plant Sci. 17: 594–605, 2012.PubMedCrossRefGoogle Scholar
  18. Clouse, S.D., Sasse, J.M.: Brassinosteroids: essential regulators of plant growth and development. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 427–451, 1998.PubMedCrossRefGoogle Scholar
  19. Divi, U.K., Rahman, T., Krishna, P.: Brassinosteroids-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. — BMC Plant Biol. 10: 151, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Ding, H.D., Zhu, X.H., Zhu, Z.W., Yang, S.J., Zha, D.S., Wu, X.X.: Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. — Biol. Plant. 56: 767–770, 2012CrossRefGoogle Scholar
  21. Fariduddin, Q., Khanam, S., Hasan, S.A., Ali, B., Hayat, S., Ahmad, A.: Effect of 28-homobrassinolide on drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L. — Acta Physiol. Plant. 31: 889–897, 2009a.CrossRefGoogle Scholar
  22. Fariduddin, Q., Yusuf, M., Chalkoo, S., Hayat, S., Ahmad, A.: 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. — Photosynthetica 49: 55–64, 2011.CrossRefGoogle Scholar
  23. Fariduddin, Q., Yusuf, M., Hayat, S., Ahmad, A.: Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. — Environ. exp. Bot. 66: 418–424, 2009b.CrossRefGoogle Scholar
  24. Friedrichsen, D.M., Joazeiro, C.A.P., Li, J., Hunter, T., Chory, J.: Brassinosteroid-Insensitive-I is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. — Plant Physiol. 123: 1247–1255, 2000.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Gille, G., Sigler, K.: Oxidative stress in living cells. — Folia microbiol. 2: 131–152, 1995.CrossRefGoogle Scholar
  26. Goda, H., Shimada, Y., Asami, T., Fujioka, S., Yoshida, S.: Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. — Plant Physiol. 130: 1319–1334, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Gomes, M.M.A.: Physiological effects related to brassinosteroid application in plants. — In: Hayat, S., Ahmad, A. (ed.): Brassinosteroids: a Class of Plant Hormones. Pp. 193–--. Springer, Dordrecht — Heidelberg — London — New York 2011.CrossRefGoogle Scholar
  28. Gratao, P.L, Gomes-Junior, R.A., Delite, F.S., Lea, P.J., Azevedo, R.A.: Antioxidants stress responses of plants to cadmium. — In: Khan, N.A., Samiullah (ed.): Cadmium Toxicity and Tolerance in Plants. Pp. 1–34. Alpha Science International, Oxford 2006.Google Scholar
  29. Hasan, S.A., Hayat, S., Ali, B., Ahmad, A.: 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. — Environ. Pollut. 151: 60–66, 2008.PubMedCrossRefGoogle Scholar
  30. Hayat, S., Ali, B., Hasan, S.A., Ahmad, A.: Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. — Environ. exp. Bot. 60: 33–41, 2007.CrossRefGoogle Scholar
  31. Hayat, S., Hasan, S.A., Yusuf, M., Hayat, Q., Ahmad, A.: Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. — Environ. exp. Bot. 69: 105–112, 2010.CrossRefGoogle Scholar
  32. Hopkins, W.J.: Physiology of plants under stress. — In: Hopkins, W.J. (ed.): Introduction to Plant Physiology. 3rd Ed. Pp. 459–479. John Wiley & Sons, New York 1995.Google Scholar
  33. Huang, L.F., Zheng, J.H., Zhang, Y.Y., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q.: Diurnal variations in gas exchange, chlorophyll fluorescence quenching and light allocation in soybean leaves: the cause for midday depression in CO2 assimilation. — Sci. Hort. 110: 214–218, 2006.CrossRefGoogle Scholar
  34. Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Gomathinayagam, M., Panneerselvam, R.: Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. — Colloids Surf. B: Biointerfaces 61: 298–303, 2008.PubMedCrossRefGoogle Scholar
  35. Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., Barna, B.: Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. — Biol. Plant. 51: 355–358, 2007.CrossRefGoogle Scholar
  36. Janeckzo, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewska, G., Skoczowski, A.: Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. — Photosynthetica 43: 293–298, 2005.CrossRefGoogle Scholar
  37. Jiang, Y.P., Cheng, F., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Chen, Z., Yu, J.Q.: Cellular glutathione redox homeostasis plays an important role in the brassinosteroidinduced increase in CO2 assimilation in Cucumis sativus. — New Phytol. 194: 932–943, 2012.PubMedCrossRefGoogle Scholar
  38. Kagale, S., Divi, U.K., Krochko, J.E., Keller, W.A., Krishna, P.: Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. — Planta 225: 353–364, 2007.PubMedCrossRefGoogle Scholar
  39. Kim, T.W., Wang, Z.Y.: Brassinosteroid signal transduction from receptor kinases to transcription factors. — Annu. Rev. Plant Physiol. Plant mol. Biol. 61: 681–704, 2010.Google Scholar
  40. Kinoshita, K., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., Chory, J.: Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. — Nature 433: 167–171, 2005.PubMedCrossRefGoogle Scholar
  41. Li, Y.H., Liu, Y.J., Xu, X.L., Jin, M., An, L.Z., Zhang, H.: Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. — Biol. Plant. 56: 192–196, 2012CrossRefGoogle Scholar
  42. Lin, Y.C., Kao, C.H.: Proline accumulation induced by excess nickel in detached rice leaves. — Biol. Plant. 51: 351–354, 2007.CrossRefGoogle Scholar
  43. Mandava, N.B.: Plant growth-promoting brassinosteroids. — Annu. Rev. Plant Physiol. Plant mol. Biol. 39: 23–52, 1988.CrossRefGoogle Scholar
  44. Mazorra, L.M., Nunez, M., Hechavarria, M., Coll, F., Sanchez-Blanco, M.J.: Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. — Biol. Plant. 45: 593–596, 2002.CrossRefGoogle Scholar
  45. Mitchell, J.W., Mandhava, N.B., Worley, J.F., Plimmer, J.R., Smith, M.V.: Brassins — a new family of plant hormones from rape pollen. — Nature 255: 1065–1066, 1970.CrossRefGoogle Scholar
  46. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V., Van Breusegem, F.: ROS signaling: the new wave? — Trends Plant Sci. 16: 300–309, 2011.PubMedCrossRefGoogle Scholar
  47. Mussig, C., Fischer, S., Altamann, T.: Brassinosteroid-regulated gene expression. — Plant Physiol. 129: 1241–1251, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Navrot, N., Rouhier, N., Gelhaye, E., Jacquot, J.: Reactive oxygen species generation and antioxidant systems in plant mitochondria. — Physiol. Plant. 129: 185–195, 2007.CrossRefGoogle Scholar
  49. Nemhauser, Jennifer, L., Mockler, T.C., Chory, J.: Interdependency of brassinosteroid and auxin signaling in Arabidopsis. — PLoS Biol. 2: E258, 2004.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Nunez, M., Mazzafera, P., Mazorra, L.M., Siqueira, W.J., Zullo, M.A.T.: Influence of a brassinsteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. — Biol Plant. 47: 67–70, 2003.CrossRefGoogle Scholar
  51. Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogues, S.: Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. — J. Plant. Growth. Regul. 27: 49–57, 2008.CrossRefGoogle Scholar
  52. Özdemir, F., Bor, M., Demiral, T., Turkan, I.: Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. — Plant. Growth Regul. 42: 203–211, 2004.CrossRefGoogle Scholar
  53. Prasad, M.N.V.: Heavy Metal Stress in Plants — from Biomolecules to Ecosystems. — Springer-Verlag, Berlin — Heidelberg. 2004.CrossRefGoogle Scholar
  54. Ruley, A.T., Sharma, N.C., Sahi, S.V.: Antioxidant defense in a lead accumulating plant, Sesbania drummondii. — Plant Physiol. Biochem. 42: 899–906, 2004.PubMedCrossRefGoogle Scholar
  55. Salveit, M.E.: Chilling injury is reduced in cucumber and rice seedlings in tomato pericarp discs by heat-shocks applied after chilling. — Post. Harvest. Biol. Technol. 21: 169–177, 2001.CrossRefGoogle Scholar
  56. Sasse, J.M.: Physiological actions of brassinosteroids: an update. — Plant. Growth Regul. 22: 276–288, 2003.Google Scholar
  57. Sharma, P., Bhardwaj, R., Arora, N., Arora, H.K., Kumar, A.: Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. — Biol. Plant. 52: 767–770, 2008.CrossRefGoogle Scholar
  58. Sharma, P., Bhardwaj, R.: Effects of 24-epibrassinolide on growth and metal uptake Brassica juncea L. under copper metal stress. — Acta Physiol. Plant. 29: 259–263, 2007.CrossRefGoogle Scholar
  59. Sharma, P., Dubey, R.S.: Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. — J. Plant. Physiol. 162: 854–864, 2005.PubMedCrossRefGoogle Scholar
  60. Simoes-Araujo, J.L., Rumjanek, N.G., Margis-Pinheiro, M.: Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. — Braz. J. Plant. Physiol. 15: 33–41, 2003.CrossRefGoogle Scholar
  61. Simonovicova, M., Tamas, L., Huttova, J., Mistrik. I.: Effect of aluminum on oxidative stress related enzymes activities in barley roots. — Biol Plant. 48: 261–266, 2004.CrossRefGoogle Scholar
  62. Singh, I., Shono, M.: Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. — Plant. Growth Regul. 47: 111–119, 2005.CrossRefGoogle Scholar
  63. Steffens, G.L.: US department of agriculture Brassins project: 1970–1980. — In: Cutler, H.G., Yokota, T., Adam, G. (ed.): Brassinosteroids: Chemistry, Bioactivity, and Applications. Pp. 2–17. American Chemical Society, Washington 1991.CrossRefGoogle Scholar
  64. Taiz, L., Zeiger, E.: Plant Physiology. Pp. 607–611. Sinauer Associates, Sunderland 2004.Google Scholar
  65. Teale, W.D., Ditengou, F.A., Dovzhenko, A.D., Li, X., Molendijk, A.M., Ruperti, B., Paponov, I., Palme, K.: Auxin as a model for the integration of hormonal signal processing and transduction. — Mol. Plant 1: 229–237, 2008.PubMedCrossRefGoogle Scholar
  66. Turkan, I., Demiral, T.: Recent developments in understanding salinity tolerance. — Environ. exp. Bot. 67: 2–9, 2009.CrossRefGoogle Scholar
  67. Upreti, K.K., Murti, G.S.R.: Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. — Biol. Plant. 48: 407–411, 2004.CrossRefGoogle Scholar
  68. Vardhini, B.V., Rao, S.S.R.: Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. — Plant. Growth Regul. 41: 25–31, 2003.CrossRefGoogle Scholar
  69. Vassilev, A., Yordanov, I.: Reductive analysis of factors limiting growth of cadmium-treated plants: a review. — Bulg. J. Plant Physiol. 23: 114–133, 1997.Google Scholar
  70. Wang, Z.Y., Wang, Q., Chong, K., Wang, F., Wang, L., Bai, M., Jia, C.: The brassinosteroid signal transduction pathway. — Cell. Res. 16: 427–434, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Xia, X.J., Huang, L.-F., Zhou, Y.-H., Mao, W.-H., Shi, K., Wu, J.-X., Asami, T., Chen, Z., Yu, J.-Q.: Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. — Planta 230: 1185–1196, 2009.PubMedCrossRefGoogle Scholar
  72. Yusuf, M., Fariduddin, Q., Ahmad, A.: 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach. — Plant Physiol. Biochem. 57: 143–153, 2012.PubMedCrossRefGoogle Scholar
  73. Yusuf, M.: Effect of brassinosteroids on nickel induced changes in Vigna radiata. — PhD. Thesis, Aligarh Muslim University, Aligarh 2011.Google Scholar
  74. Yusuf, M., Fariduddin, Q., Hayat, S., Hasan, S.A., Ahmad, A.: Protective responses of 28-homobrssinolide in cultivars of Triticum aestivum with different levels of nickel. — Arch. Environ. Contam. Toxicol. 60: 68–76, 2011.PubMedCrossRefGoogle Scholar
  75. Zhang, J.H., Huang, W.D., Liu, Y.P., Pan, Q.H.: Effects of temperature acclimation pre-treatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. — J. Integ. Plant. Biol. 47: 959–970, 2005.CrossRefGoogle Scholar
  76. Zhang, M., Zhai, Z., Tian, X., Duan, L., Li, Z.: Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). — Plant Growth Regul. 56: 257–264, 2008.CrossRefGoogle Scholar
  77. Zurek, D.M., Rayle, D.L., McMorris, T.C., Clouse, S.D.: Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid regulated stem elongation. — Plant Physiol. 104: 503–513, 1994.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Plant Physiology and Biochemistry Section, Department of BotanyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations