Advertisement

Biologia Plantarum

, Volume 58, Issue 1, pp 174–178 | Cite as

An assessment of Agropyron cristatum tolerance to cadmium contaminated soil

  • Q. Guo
  • L. Meng
  • P. C. Mao
  • X. X. Tian
Brief Communication

Abstract

A pot experiment was conducted in a greenhouse to assess the tolerance of Agropyron cristatum plants to cadmium contaminated soils (0, 5, 10, 25, 50, 100, 150, and 200 mg kg−1) for 100 d. Results indicate that Cd in concentrations of 5–50 mg kg−1 had no significant impact on growth, relative membrane permeability (RMP), lipid peroxidation measured as malondialdehyde (MDA) content, and chlorophyll (Chl) content relative to the control. Exposure of these plants to high concentrations of Cd (100–200 mg kg−1) caused a small reduction in growth and Chl content and a slight enhancement of RMP and MDA content compared with the control. In addition, superoxide dismutase (SOD) and peroxidase (POD) activities show an increasing trend with the increase of Cd content in soil. The Cd content in the roots was 4.7–6.1 times higher than that in the shoots under all Cd treatments suggesting that the plant can be classified as a Cd excluder. The translocation factor was low and similar at 25–200 mg kg−1 Cd treatments. In summary, A. cristatum plants tolerated Cd stress and might have potential for the phytoremediation of Cd contaminated soils.

Additional key words

antioxidant enzyme chlorophyll malondialdehyde membrane permeability phytoremediation translocation factor 

Abbreviations

Chl

chlorophyll

MDA

malondialdehyde

POD

peroxidases

RMP

relative membrane permeability

SOD

superoxide dismutase

TF

translocation factor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarenga, P., Gonçalves, A.P., Fernandes, R.M., Varennes, A.D., Vallini, G., Duarte, E., Cunha-Queda A.C.: Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. — Sci. Total Environ. 406: 43–56, 2008.PubMedCrossRefGoogle Scholar
  2. Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Physiol. 55: 373–399. 2004.Google Scholar
  3. Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaïbi, W., Djebali, W.: Effects of exogenous salicylic acid pretreatment on cadmium toxicity and leaf lipidcontent in Linum usitatissimum L. — Ecotoxicol. Environ. Safety 73: 1004–1011, 2010.PubMedCrossRefGoogle Scholar
  4. Bočová, B., Huttová, J., Liptáková, Ľ., Mistrík, I., Ollé, M., Tamás, L.: Impact of short-term cadmium treatment on catalase and ascorbate peroxidase activities in barley root tips. — Biol. Plant. 56: 724–728, 2012.CrossRefGoogle Scholar
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  6. Brunner, I., Luster, J., Günthardt-Goerg, M.S., Frey, B.: Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. — Environ. Pollut. 152: 559–568, 2008.PubMedCrossRefGoogle Scholar
  7. Chance, B., Maehly, A.C.: Assay of catalase and peroxidases. — Method. Enzymol. 11: 764–775, 1955.Google Scholar
  8. Che, Y.H., Li, H.J., Yang, Y.P., Yang, X.M., Li, X.Q., Li, L.H.: On the use of SSR markers for the genetic characterization of the Agropyron cristatum (L.) Gaertn. in northern china. — Genet. Resour. Crop Evol. 55: 389–396, 2008.CrossRefGoogle Scholar
  9. Chien, H., Wang, J., Lin, C., Kao, C.: Cadmium toxicity of rice leaves is mediated through lipid peroxidation. — Plant Growth Regul. 33: 205–213, 2001.CrossRefGoogle Scholar
  10. Cobbett, C., Goldsbrough, P.: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. — Annu. Rev. Plant Biol. 53: 159–182, 2002.PubMedCrossRefGoogle Scholar
  11. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 32: 93–101, 1981.CrossRefGoogle Scholar
  12. Domínguez, M.T., Madrid, F., Marañón, T., Murillo, J.M.: Cadmium availability in soil and retention in oak roots: potential for phytostabilization. — Chemosphere 76: 480–486, 2009.PubMedCrossRefGoogle Scholar
  13. Ekmekçi, Y., Tanyolac, D., Ayhan, B.: Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. — J. Plant Physiol. 165: 600–611, 2008.PubMedCrossRefGoogle Scholar
  14. Gibon, Y., Bessieres, M.A., Larher, F.: Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? — Plant Cell Environ. 20: 329–340, 1997.CrossRefGoogle Scholar
  15. Hall, L.J.: Cellular mechanism for heavy metal detoxification and tolerance. — J. exp. Bot. 53: 1–11, 2002.PubMedCrossRefGoogle Scholar
  16. Jiang, Y., Huang, B.: Effects of calcium and antioxidant metabolism and water relations associated with heat tolerance in two cool-season grasses. — J. exp. Bot. 355: 341–349, 2001.CrossRefGoogle Scholar
  17. Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., Lee, Y.S.: The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. — Plant J. 50: 207–218, 2007.PubMedCrossRefGoogle Scholar
  18. Krantev, A., Yordanova, R., Janda, T., Szalai, G., Popova, L.: Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. — J. Plant Physiol. 165: 920–931, 2008.PubMedCrossRefGoogle Scholar
  19. Lozano-Rodriguez, E., Hernandez, L.E., Bonay, P., Carpena-Ruiz, R.O.: Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. — J. exp. Bot. 48: 123–128, 1997.CrossRefGoogle Scholar
  20. Ma, Q., Yue, L.J., Zhang, J.L., Wu, G.Q., Bao, A.K., Wang, S.M.: Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. — Tree Physiol. 32: 4–13, 2012.PubMedCrossRefGoogle Scholar
  21. Martin, S. R., Llugany, M., Barceló, J., Poschenrieder, C.: Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. — Biol. Plant. 56: 729–734, 2012.CrossRefGoogle Scholar
  22. Mendez, M.O., Maier, R.M.: Phytostabilization of mine tailings in arid and semiarid environments — an emerging remediation technology. — Environ. Health Perspect. 116: 278–283, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.J.: Salicylic acid alleviates the cadmium toxicity in barley seedlings. — Plant Physiol. 132: 272–281, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Padmavathiamma, PK., Li, L.Y.: Phytoremediation technology: hyper-accumulation of metals in plants. — Water Air Soil Pollut. 184: 105–126, 2007.CrossRefGoogle Scholar
  25. Podazza, G., Arias, M., Prado, F.E.: Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. — J. Hazard. Mater. 215-216: 83–89, 2012.PubMedCrossRefGoogle Scholar
  26. Sanita di Toppi, L., Gabrielli, R.: Response to cadmium in higher plants. — Environ. exp. Bot. 41: 105–130, 1999.CrossRefGoogle Scholar
  27. Sgherri, C., Cosi, E., Navari-Izzo, F.: Phenols and antioxidative status of Raphanus sativus grown in copper excess. — Physiol. Plant. 118: 21–28, 2003.PubMedCrossRefGoogle Scholar
  28. Shi, G.R., Cai, Q.S., Liu, Q.Q., Wu, L.: Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to Acta Physiol.Plant. 31: 969–977, 2009.Google Scholar
  29. Simon, L.: Stabilization of metals in acidic mine soil with amendments and red fescue (Festuca rubra L.) growth. — Environ. Geochem. Health 27: 289–300, 2005.PubMedCrossRefGoogle Scholar
  30. Tao, Y.M., Chen, Y.Z., Tan, T., Liu, X.C., Yang, D.L., Liang, S.C.: Comparison of antioxidant responses to cadmium and lead in Bruguiera gymnorrhiza seedlings. — Biol. Plant. 56: 149–152, 2012.CrossRefGoogle Scholar
  31. Tian, S.K., Lu, L. L., Yang, X.E., Huang, H.G., Wang, K., Brown, P.H.: Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. — Biol. Plant. 56: 344–350, 2012.CrossRefGoogle Scholar
  32. Wen, L., Fu, D.F.: The phytoremediation of ryegrass on multiple heavy metal soils by two reinforced methods. — China Environ. Sci. 28: 786–790, 2008.Google Scholar
  33. Zhang, X.F., Xia, H.P., Li, Z.A., Zhuang, P., Cao, B.: Potential of four forage grasses in remediation of Cd and Zn contaminated soils. — Bioresour. Technol. 101: 2063–2066, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Beijing Research and Development Center for Grass and EnvironmentBeijing Academy of Agriculture and Forestry SciencesBeijingP.R. China

Personalised recommendations