Skip to main content
Log in

An assessment of Agropyron cristatum tolerance to cadmium contaminated soil

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

A pot experiment was conducted in a greenhouse to assess the tolerance of Agropyron cristatum plants to cadmium contaminated soils (0, 5, 10, 25, 50, 100, 150, and 200 mg kg−1) for 100 d. Results indicate that Cd in concentrations of 5–50 mg kg−1 had no significant impact on growth, relative membrane permeability (RMP), lipid peroxidation measured as malondialdehyde (MDA) content, and chlorophyll (Chl) content relative to the control. Exposure of these plants to high concentrations of Cd (100–200 mg kg−1) caused a small reduction in growth and Chl content and a slight enhancement of RMP and MDA content compared with the control. In addition, superoxide dismutase (SOD) and peroxidase (POD) activities show an increasing trend with the increase of Cd content in soil. The Cd content in the roots was 4.7–6.1 times higher than that in the shoots under all Cd treatments suggesting that the plant can be classified as a Cd excluder. The translocation factor was low and similar at 25–200 mg kg−1 Cd treatments. In summary, A. cristatum plants tolerated Cd stress and might have potential for the phytoremediation of Cd contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Chl:

chlorophyll

MDA:

malondialdehyde

POD:

peroxidases

RMP:

relative membrane permeability

SOD:

superoxide dismutase

TF:

translocation factor

References

  • Alvarenga, P., Gonçalves, A.P., Fernandes, R.M., Varennes, A.D., Vallini, G., Duarte, E., Cunha-Queda A.C.: Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. — Sci. Total Environ. 406: 43–56, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Physiol. 55: 373–399. 2004.

    CAS  Google Scholar 

  • Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaïbi, W., Djebali, W.: Effects of exogenous salicylic acid pretreatment on cadmium toxicity and leaf lipidcontent in Linum usitatissimum L. — Ecotoxicol. Environ. Safety 73: 1004–1011, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Bočová, B., Huttová, J., Liptáková, Ľ., Mistrík, I., Ollé, M., Tamás, L.: Impact of short-term cadmium treatment on catalase and ascorbate peroxidase activities in barley root tips. — Biol. Plant. 56: 724–728, 2012.

    Article  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Brunner, I., Luster, J., Günthardt-Goerg, M.S., Frey, B.: Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. — Environ. Pollut. 152: 559–568, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Chance, B., Maehly, A.C.: Assay of catalase and peroxidases. — Method. Enzymol. 11: 764–775, 1955.

    Google Scholar 

  • Che, Y.H., Li, H.J., Yang, Y.P., Yang, X.M., Li, X.Q., Li, L.H.: On the use of SSR markers for the genetic characterization of the Agropyron cristatum (L.) Gaertn. in northern china. — Genet. Resour. Crop Evol. 55: 389–396, 2008.

    Article  Google Scholar 

  • Chien, H., Wang, J., Lin, C., Kao, C.: Cadmium toxicity of rice leaves is mediated through lipid peroxidation. — Plant Growth Regul. 33: 205–213, 2001.

    Article  CAS  Google Scholar 

  • Cobbett, C., Goldsbrough, P.: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. — Annu. Rev. Plant Biol. 53: 159–182, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 32: 93–101, 1981.

    Article  CAS  Google Scholar 

  • Domínguez, M.T., Madrid, F., Marañón, T., Murillo, J.M.: Cadmium availability in soil and retention in oak roots: potential for phytostabilization. — Chemosphere 76: 480–486, 2009.

    Article  PubMed  Google Scholar 

  • Ekmekçi, Y., Tanyolac, D., Ayhan, B.: Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. — J. Plant Physiol. 165: 600–611, 2008.

    Article  PubMed  Google Scholar 

  • Gibon, Y., Bessieres, M.A., Larher, F.: Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? — Plant Cell Environ. 20: 329–340, 1997.

    Article  Google Scholar 

  • Hall, L.J.: Cellular mechanism for heavy metal detoxification and tolerance. — J. exp. Bot. 53: 1–11, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Huang, B.: Effects of calcium and antioxidant metabolism and water relations associated with heat tolerance in two cool-season grasses. — J. exp. Bot. 355: 341–349, 2001.

    Article  Google Scholar 

  • Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., Lee, Y.S.: The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. — Plant J. 50: 207–218, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Krantev, A., Yordanova, R., Janda, T., Szalai, G., Popova, L.: Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. — J. Plant Physiol. 165: 920–931, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Rodriguez, E., Hernandez, L.E., Bonay, P., Carpena-Ruiz, R.O.: Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. — J. exp. Bot. 48: 123–128, 1997.

    Article  CAS  Google Scholar 

  • Ma, Q., Yue, L.J., Zhang, J.L., Wu, G.Q., Bao, A.K., Wang, S.M.: Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. — Tree Physiol. 32: 4–13, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Martin, S. R., Llugany, M., Barceló, J., Poschenrieder, C.: Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. — Biol. Plant. 56: 729–734, 2012.

    Article  CAS  Google Scholar 

  • Mendez, M.O., Maier, R.M.: Phytostabilization of mine tailings in arid and semiarid environments — an emerging remediation technology. — Environ. Health Perspect. 116: 278–283, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.J.: Salicylic acid alleviates the cadmium toxicity in barley seedlings. — Plant Physiol. 132: 272–281, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Padmavathiamma, PK., Li, L.Y.: Phytoremediation technology: hyper-accumulation of metals in plants. — Water Air Soil Pollut. 184: 105–126, 2007.

    Article  CAS  Google Scholar 

  • Podazza, G., Arias, M., Prado, F.E.: Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. — J. Hazard. Mater. 215-216: 83–89, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Sanita di Toppi, L., Gabrielli, R.: Response to cadmium in higher plants. — Environ. exp. Bot. 41: 105–130, 1999.

    Article  Google Scholar 

  • Sgherri, C., Cosi, E., Navari-Izzo, F.: Phenols and antioxidative status of Raphanus sativus grown in copper excess. — Physiol. Plant. 118: 21–28, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Shi, G.R., Cai, Q.S., Liu, Q.Q., Wu, L.: Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to Acta Physiol.Plant. 31: 969–977, 2009.

    CAS  Google Scholar 

  • Simon, L.: Stabilization of metals in acidic mine soil with amendments and red fescue (Festuca rubra L.) growth. — Environ. Geochem. Health 27: 289–300, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Tao, Y.M., Chen, Y.Z., Tan, T., Liu, X.C., Yang, D.L., Liang, S.C.: Comparison of antioxidant responses to cadmium and lead in Bruguiera gymnorrhiza seedlings. — Biol. Plant. 56: 149–152, 2012.

    Article  CAS  Google Scholar 

  • Tian, S.K., Lu, L. L., Yang, X.E., Huang, H.G., Wang, K., Brown, P.H.: Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. — Biol. Plant. 56: 344–350, 2012.

    Article  CAS  Google Scholar 

  • Wen, L., Fu, D.F.: The phytoremediation of ryegrass on multiple heavy metal soils by two reinforced methods. — China Environ. Sci. 28: 786–790, 2008.

    CAS  Google Scholar 

  • Zhang, X.F., Xia, H.P., Li, Z.A., Zhuang, P., Cao, B.: Potential of four forage grasses in remediation of Cd and Zn contaminated soils. — Bioresour. Technol. 101: 2063–2066, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Meng.

Additional information

Acknowledgements: This research was financially supported by the Scientific Innovation Ability Construction Project of Beijing Academy of Agriculture and Forestry Sciences (grant No. KJCX201101003) and the International Cooperation and Exchange Project of China (grant No. 2008DFR30200). We are grateful to the anonymous reviewers and editors for their valuable suggestions and comments on the initial version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Q., Meng, L., Mao, P.C. et al. An assessment of Agropyron cristatum tolerance to cadmium contaminated soil. Biol Plant 58, 174–178 (2014). https://doi.org/10.1007/s10535-013-0359-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-013-0359-4

Additional key words

Navigation