Biologia Plantarum

, Volume 58, Issue 1, pp 179–184 | Cite as

Increased cucumber salt tolerance by grafting on pumpkin rootstock and after application of calcium

  • B. Lei
  • Y. Huang
  • J. J. Xie
  • Z. X. Liu
  • A. Zhen
  • M. L. Fan
  • Z. L. Bie
Brief Communication


Self-grafted and pumpkin rootstock-grafted cucumber plants were subjected to the following four treatments: 1) aerated nutrient solution alone (control), 2) nutrient solution with 10 mM Ca(NO3)2 (Ca), 3) nutrient solution with 90 mM NaCl (NaCl), and 4) nutrient solution with 90 mM NaCl + 10 mM Ca(NO3)2 (NaCl+Ca). The NaCl treatment decreased the plant dry mass and content of Ca2+ and K+ but increased the Na+ content in roots and shoots. Smaller changes were observed in pumpkin rootstock-grafted plants. Supplementary Ca(NO3)2 ameliorated the negative effects of NaCl on plant dry mass, relative growth rate (RGR), as well as Ca2+, K+, and Na+ content especially for pumpkin rootstock-grafted plants. Supplementary Ca(NO3)2 distinctly stimulated the plasma membrane (PM) H+-ATPase activity which supplies the energy to remove excess Na+ from the cells. The expressions of gene encoding PM H+-ATPases (PMA) and gene encoding a PM Na+/H+ antiporter (SOS1) were up-regulated when Ca(NO3)2 was applied. The pumpkin rootstock-grafted plants had higher PM H+-ATPase activity as well as higher PMA and SOS1 expressions than the self-grafted plants under NaCl + Ca treatment. Therefore, the addition of Ca2+ in combination with pumpkin rootstock grafting is a powerful way to increase cucumber salt tolerance.

Additional key words

Cucumis sativus Cucurbita moschata NaCl plasma membrane H+-ATPase Na+/H+ antiport SOS1 salinity 



inorganic phosphate


plasma membrane


gene encoding plasma membrane H+-ATPase


relative growth rate


gene encoding a plasma membrane Na+/H+ antiporter


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam, S., Huq, S.M.I., Kawai, S., Islam, A.: Effects of applying calcium salts to coastal saline soils on growth and mineral nutrition of rice varieties. — J. Plant Nutr. 25: 561–576, 2002.CrossRefGoogle Scholar
  2. Alizadeh, M., Singh, S.K., Patel, V.B., Bhattacharya, R.C., Yadav, B.P.: In vitro responses of grape rootstocks to NaCl. — Biol. Plant. 54: 381–385, 2010.CrossRefGoogle Scholar
  3. Arshi, A., Abdin, M.Z., Iqbal, M.: Ameliorative effects of CaCl2 on growth, ionic relations, and proline content of senna under salinity stress. — J. Plant Nutr. 28: 101–125, 2005.CrossRefGoogle Scholar
  4. Binzel, M.L.: NaCl-induced accumulation of tonoplast and plasma membrane H+-ATPase message in tomato. — Physiol. Plant. 94: 722–728, 1995.CrossRefGoogle Scholar
  5. Bolat, I., Kaya, C., Almaca, A., Timucin, S.: Calcium sulfate improves salinity tolerance in rootstocks of plum. — J. Plant Nutr. 29: 553–564, 2006.CrossRefGoogle Scholar
  6. Bradford, M.M.: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  7. Caines, A.M., Shennan, C.: Interactive effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes differing in Ca2+ use efficiency. — Plant Physiol. Biochem. 37: 569–576, 1999.Google Scholar
  8. Cerda, A., Martinez, V.: Nitrogen fertilization under saline conditions in tomato and cucumber plants. — J. hort. Sci. 63: 451–458, 1988.Google Scholar
  9. Chen, Z., Newman, I., Zhou, M., Mendham, N., Zhang, G., Shabala, S.: Screening plants for salt tolerance by measuring K+ flux: a case study for barley. — Plant Cell Environ. 28: 1230–1246, 2005.CrossRefGoogle Scholar
  10. Chen, Z., Pottosin, I.I., Cuin, T.A., Fuglsang, A.T., Tester, M., Jha, D., Zepeda-Jazo, I., Zhou, M., Palmgren, M.G., Newman, I.A., Shabala, S.: Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. — Plant Physiol. 145: 1714–1725, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Colla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A., Rea, E.: Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. — J. hort. Sci. Biotechnol. 81: 146–152, 2006.Google Scholar
  12. Cramer, G.R., Spurr, A.R.: Responses of lettuce to salinity. I. Effects of NaCl and Na2SO4 on growth. — J. Plant Nutr. 9: 115–130, 1986.CrossRefGoogle Scholar
  13. Cuin, T.A., Betts, S.A., Chalmandrier, R., Shabala, S.: A root’s ability to retain K+ correlates with salt tolerance in wheat. — J. exp. Bot. 59: 2697–2706, 2008.PubMedCrossRefGoogle Scholar
  14. Davenport, R.J., Reid, R.J., Smith, F.A.: Sodium-calcium interactions in two wheat species differing in salinity tolerance. — Physiol. Plant. 99: 323–327, 1997.CrossRefGoogle Scholar
  15. Estañ, M.T., Martinez-Rodriguez, M.M., Perez-Alfocea, F., Flowers, T.J., Bolarin, M.C.: Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. — J. exp. Bot. 56: 703–712, 2005.PubMedCrossRefGoogle Scholar
  16. Garcia-Legaz, M.F., Lopez-Gomez, E., Beneyto, J.M., Navarro, A., Sanchez-Blanco, M.J.: Physiological behaviour of loquat and anger rootstocks in relation to salinity and calcium addition. — J. Plant Physiol. 165: 1049–1060, 2008.PubMedCrossRefGoogle Scholar
  17. Goreta, S., Bucevic-Popovic, V., Selak, G.V., Pavela-Vrancic, M., Perica, S.: Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. — J. agr. Sci. 146: 695–704, 2008.CrossRefGoogle Scholar
  18. Halfter, U., Ishitani, M., Zhu, J.K.: The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. — Proc. nat Acad. Sci. USA. 97: 3735–3740, 2000.PubMedCrossRefGoogle Scholar
  19. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity. — Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463–499, 2000.PubMedCrossRefGoogle Scholar
  20. Hoagland, D.R., Arnon, D.S.: The water culture method for growing plants without soil. — Calif. agr. exp. Stat. Circ. 347: 1–32, 1950.Google Scholar
  21. Horie, T., Horie, R., Chan, W.Y., Leung, H.Y., Schroeder, J.I.: Calcium regulation of sodium hypersensitivities of sos3 and athkt1 mutants. — Plant Cell Physiol. 47: 622–633, 2006.PubMedCrossRefGoogle Scholar
  22. Huang, Y., Bie, Z., He, S., Hua, B., Zhen, A., Liu, Z.: Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. — Environ. exp. Bot. 69: 32–38, 2010.CrossRefGoogle Scholar
  23. Huang, Y., Bie, Z., Liu, Z., Zhen, A., Jiao, X.: Improving cucumber photosynthetic capacity under NaCl stress by grafting onto two salt-tolerant pumpkin rootstocks. — Biol. Plant. 55: 285–290, 2011.CrossRefGoogle Scholar
  24. Kabała, K., Janicka-Russak, M.: Na+/H+ antiport activity in plasma membrane and tonoplast vesicles isolated from NaCl-treated cucumber roots. — Biol. Plant 56: 377–382, 2012.CrossRefGoogle Scholar
  25. KabaŁa, K., KŁobus, G.: Characterization of the tonoplast proton pumps in Cucumis sativus L. root cells. — Acta Physiol. Plant. 23: 55–63, 2001.CrossRefGoogle Scholar
  26. Kaya, C., Ak, B.E., Higgs, D.: Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. — J. Plant Nutr. 26: 543–560, 2003.CrossRefGoogle Scholar
  27. Kent, L.M., Läuchli, A.: Germination and seedling growth of cotton: salinity-calcium interactions. — Plant Cell Environ. 8: 155–159, 1985.CrossRefGoogle Scholar
  28. KŁobus, G., Buczek, J.: The role of plasma membrane oxidoreductase activity in proton transport. — J. Plant Physiol. 146: 103–107, 1995.CrossRefGoogle Scholar
  29. Kłobus, G., Janicka-Russak, M.: Modulation by cytosolic components of proton pump activities in plasma membrane and tonoplast from Cucumis sativus roots during salt stress. — Physiol. Plant. 121: 84–92, 2004.PubMedCrossRefGoogle Scholar
  30. Lahaye, P.A., Epstein, E.: Calcium and salt toleration by bean plants. — Physiol. Plant. 25: 213–218, 1971.CrossRefGoogle Scholar
  31. Läuchli, A., Epstein, E.: Transport of potassium and rubidium in plant roots: the significance of calcium. — Plant Physiol. 45: 639–641, 1970.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Lee, J.M.: Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. — HortScience 29: 235–239, 1994.Google Scholar
  33. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. — Methods 25: 402–408, 2001.PubMedCrossRefGoogle Scholar
  34. Lopez, M.V., Satti, S.M.E.: Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. — Plant Sci. 114: 19–27, 1996.CrossRefGoogle Scholar
  35. Lynch, J., Cramer, G., Läuchli, A.: Salinity reduces membraneassociated calcium in corn root protoplasts. — Plant Physiol. 83: 390–394, 1987.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Maeda, Y., Nakazawa, R.: Effects of the timing of calcium application on the alleviation of salt stress in the maize, tall fescue, and reed canarygrass seedlings. — Biol. Plant. 52: 153–156, 2008.CrossRefGoogle Scholar
  37. Matsumoto, H., Chung, G.C.: Increase in proton-transport activity of tonoplast vesicles as an adaptive response of barley roots to NaCl stress. — Plant Cell Physiol. 29: 1133–1140, 1988.Google Scholar
  38. Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.PubMedCrossRefGoogle Scholar
  39. Nakamura, Y., Kasamo, K., Sakata, M., Ohta, E.: Stimulation of the extrusion of protons and H+-ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high-NaCl stress and its relation to external levels of Ca2+ ions. — Plant Cell Physiol. 33: 139–149, 1992.Google Scholar
  40. Navarro, J.M., Martínez, V., Carvajal, M.: Ammonium, bicarbonate and calcium effects on tomato plants grown under saline conditions. — Plant Sci. 157: 89–96, 2000.PubMedCrossRefGoogle Scholar
  41. Niu, X.M., Narasimhan, M., Salzman, R.A., Bressan, R.A., Hasegawa, P.M.: NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. — Plant Physiol. 103: 713–718, 1993.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Pardo, J.M., Cubero, B., Leidi, E.O., Quintero, F.J.: Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. — J. exp. Bot. 57: 1181–1199, 2006.PubMedCrossRefGoogle Scholar
  43. Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., Zhu, J.K.: Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. — Proc. nat Acad. Sci. USA. 99: 8436–8441, 2002.PubMedCrossRefGoogle Scholar
  44. Quintero, F.J., Ohta, M., Shi, H., Zhu, J.K., Pardo, J.M.: Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. — Proc. nat Acad. Sci. USA. 99: 9061–9066, 2002.PubMedCrossRefGoogle Scholar
  45. Renault, S.: Response of red-osier dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: effects of supplemental calcium. — Physiol. Plant. 123: 75–81, 2005.CrossRefGoogle Scholar
  46. Rouphael, Y., Cardarelli, M., Rea, E., Colla, G.: Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. — Photosynthetica 50: 180–188, 2012.CrossRefGoogle Scholar
  47. Santa-Cruz, A., Martínez-Rodríguez, M.M., Pérez-Alfocea, F., Romero-Aranda, R. and Bolarín, M.C.: The rootstock effect on the tomato salinity response depends on the shoot genotype. — Plant Sci. 162: 825–831, 2002.CrossRefGoogle Scholar
  48. Shabala, S., Shabala, L., Volkenburgh, E.V.: Effect of calcium on root development and root ion fluxes in salinised barley seedlings. — Funct. Plant Biol. 30: 507–514, 2003.CrossRefGoogle Scholar
  49. Suarez, D.L., Grieve, C.M.: Predicting cation ratios in corn from saline solution composition. — J. exp. Bot. 39: 605–612, 1988.CrossRefGoogle Scholar
  50. Sun, J., Dai, S., Wang, R., Chen, S., Li, N., Zhou, X., Lu, C., Shen, X., Zheng, X., Hu, Z., Zhang, Z., Song, J., Xu, Y.: Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. — Tree Physiol. 29: 1175–1186, 2009.PubMedCrossRefGoogle Scholar
  51. Sun, J., Wang, M.J., Ding, M.Q., Deng, S.R., Liu, M.Q., Lu, C.F., Zhou, X.Y., Shen, X., Zheng, X.J., Zhang, Z.K., Song, J., Hu, Z.M., Xu, Y., Chen, S.L.: H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. — Plant Cell Environ. 33: 943–958, 2010.PubMedCrossRefGoogle Scholar
  52. Tüzel, Y., Tüzel, I.H., Üçer, F.: Effects of salinity on tomato growing in substrate culture. — Acta Hort. 609: 329–335, 2003.Google Scholar
  53. Upadhyay, A., Upadhyay, A.K., Bhirangi, R.A.: Expression of Na+/H+ antiporter gene in response to water and salinity stress in grapevine rootstocks. — Biol. Plant. 56: 762–766, 2012.CrossRefGoogle Scholar
  54. Van Hulten, M., Pelser, M., van Loon, L.C., Pieterse, C.M.J., Ton, J.: Costs and benefits of priming for defense in Arabidopsis. — Proc. nat Acad. Sci. USA. 103: 5602–5607, 2006.PubMedCrossRefGoogle Scholar
  55. Zhao, H.C., Zhu, T., Wu, J., Xi, B.S.: Effect of Ca2+ on H+-ATPase activity of plasma membrane in wheat root. — Colloid Surface B 28: 147–151, 2003.CrossRefGoogle Scholar
  56. Zhen, A., Bie, Z., Huang, Y., Liu, Z., Li, Q.: Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. — Soil Sci. Plant Nutr. 56: 263–271, 2010.CrossRefGoogle Scholar
  57. Zhu, J., Bie, Z.L., Huang, Y., Han, X.Y.: Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. — Soil Sci. Plant Nutr. 54: 895–902, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • B. Lei
    • 1
  • Y. Huang
    • 1
  • J. J. Xie
    • 1
  • Z. X. Liu
    • 1
  • A. Zhen
    • 1
  • M. L. Fan
    • 1
  • Z. L. Bie
    • 1
  1. 1.Key Laboratory of Horticultural Plant Biology, Ministry of Education and College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP.R. China

Personalised recommendations