Advertisement

Biologia Plantarum

, Volume 57, Issue 3, pp 581–586 | Cite as

Spatial distribution and speciation of copper in root tips of cucumber revealed by μ-XRF and μ-XANES

  • J. Song
  • Y. Q. Yang
  • S. H. Zhu
  • G. C. Chen
  • X. F. Yuan
  • T. T. Liu
  • X. H. Yu
  • J. Y. Shi
Brief Communication

Abstract

The localization, biotransformation, and chemical speciation of copper in root tips of cucumber (Cucumis sativus) were investigated using synchrotron-based micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge structure (μ-XANES). The highest content of Cu was found in root cap and meristematic zone whereas low Cu content in elongation and maturation zone. There was a dramatic increase of Cu content in root cap and meristematic zone after treatment with 100 μM CuSO4 for 72 h. The μ-XANES analysis revealed that most of Cu in root tip was bound with alginate, citrate, and cysteine-like ligands whereas rarely deposited in form of CuO. From root cap to maturation zone, the proportion of Cu bound with alginate-like ligands increased whereas that bound with citrate-like ligands decreased. The proportion of Cu bound with cysteine-like ligands increased from root cap to elongation zone but sharply declined in maturation zone. The results suggested that Cu was chelated by S ligands in the cell walls which protect protoplasm against possible damage caused by Cu excess.

Additional key words

Cucumis sativus metallothioneins phytochelatins X-ray fluorescence 

Abbreviations

EXAFS

extended X-ray absorption fine structure

MTs

metallothioneins

PCs

phytochelatins

SRXRF

synchrotron radiation X-ray fluorescence

SSRF

ShanghHai synchrotron radiation facility

μ-XRF

micro X-ray fluorescence

μ-XANES

micro X-ray absorption near edge structure

XAS

X-ray absorption spectroscopy

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, J.H., Xiao, R., Cui, B.S., Zhang, K.J., Wang, Q.G., Liu, X.H., Gao, H.F., Huang, L.B.: Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. — Environ. Pollut. 159: 817–8242, 2011.PubMedCrossRefGoogle Scholar
  2. Barrett, J.E.S., Taylor, K.G., Hudson-Edwards, K.A., Charnock, J.M.: Solid-phase speciation of Pb in urban road dust sediment: a XANES and EXAFS study. — Environ. Sci. Technol. 44: 2940–2946, 2010.PubMedCrossRefGoogle Scholar
  3. Clemens, S.: Molecular mechanisms of plant metal tolerance and homeostasis. — Planta 212: 475–486, 2001.PubMedCrossRefGoogle Scholar
  4. Clemens, S.: Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. — Biochimie 88: 1707–1719, 2006.PubMedCrossRefGoogle Scholar
  5. Cobbett, C.S.: Phytochelatins and their roles in heavy metal detoxification. — Plant Physiol. 123: 825–832, 2000.PubMedCrossRefGoogle Scholar
  6. Fukuda, N., Hokura, A., Kitajima, N., Terada, Y., Saito, H., Abe, T., Nakai, I.: Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper- accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation. — J. Anal. Atom. Spectrometry 23: 1068–1075, 2008.CrossRefGoogle Scholar
  7. Giampaoli, P., Tresmondi, F., Lima, G.P.P., Kanashiro, S., Alves, E.S., Domingos, M., Tavares, A.R.: Analysis of tolerance to copper and zinc in Aechmea blanchetiana grown in vitro. — Biol. Plant. 56: 83–88, 2012.CrossRefGoogle Scholar
  8. Hall, J.L.: Cellular mechanisms for heavy metal detoxification and tolerance. — J. exp. Bot. 53: 1–11, 2002.PubMedCrossRefGoogle Scholar
  9. Jeon, C., Park, J.Y., Yoo, Y.J.: Characteristics of metal removal using carboxylated alginic acid. — Water Resour. 36: 1814–1824, 2002.Google Scholar
  10. Kahle, H.: Response of roots of trees to heavy-metals. — Environ. exp. Bot. 33: 99–119, 1993.CrossRefGoogle Scholar
  11. Kang, S.X., Sun, X., Ju, X., Huang, Y.Y., Yao, K., Wu, Z.Q., Xian, D.C.: Measurement and calculation of escape peak intensities in synchrotron radiation X-ray fluorescence analysis. — Nucl. Instrument. Methods B 192: 365–369, 2002.CrossRefGoogle Scholar
  12. Kopittke, P.M., Menzies, N.W., Jonge, M.D., McKenna, B.A., Donner, E., Webb, R.I., Paterson, D.J., Howard, D.L., Ryan, C.G., Glover, C.J., Scheckel, K.G., Lombi, E.: In situ distribution and speciation of toxic copper, nickel and zinc in hydrated roots of cowpea. — Plant Physiol. 156: 663–673, 2011.PubMedCrossRefGoogle Scholar
  13. Kramer, U.: Metal hyperaccumulation in plants. — Annu. Rev. Plant Biol. 61: 517–534, 2010.PubMedCrossRefGoogle Scholar
  14. Lee, D.K., Ahn, J.H., Song, S.K., Choi, Y.D., Lee, J.S.: Expression of an expansin gene is correlated with root elongation in soybean. — Plant Physiol. 131: 985–997, 2003.PubMedCrossRefGoogle Scholar
  15. Lee, J., Reeves, R.D., Brooks, R.R., Jaffre, T.L.: Relation between nickel and citric-acid in some nickel-accumulating plants. — Phytochemistry 17: 1033–1035, 1978.CrossRefGoogle Scholar
  16. Liao, M.T., Hedley, M.J., Woolley, D.J., Brooks, R.R., Nichols, M.A.: Copper uptake and translocation in chicory (Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv. Rondy) plants grown in NFT system. I. Copper uptake and distribution in plants. — Plant Soil 221: 135–142, 2000.CrossRefGoogle Scholar
  17. Lin, S.L., Wum, L.: Effects of copper concentration on mineral nutrient-uptake and copper accumulation in protein of copper-tolerant and copper-nontolerant Lotus purshianus L. — Ecotoxicol. Environ. Safe 29: 214–228, 1994.CrossRefGoogle Scholar
  18. Maksymiec, W., Baszyński, T.: The role of Ca ions in changes induced by excess Cu2+ in bean plants. Growth parameters. — Acta Physiol. Plant. 20: 411–417, 1998.CrossRefGoogle Scholar
  19. Min, H.L., Cai, S.J., Rui, Z., Sha, S., Xie, K.B., Xu, Q.S.: Calcium-mediated enhancement of copper tolerance in Elodea canadensis. — Biol. Plant. 56: 337–343, 2012.CrossRefGoogle Scholar
  20. Murphy, A., Zhou, J.M., Goldsbrough, P.B., Taiz, L.: Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. — Plant Physiol. 113: 1293–1301, 1997.PubMedCrossRefGoogle Scholar
  21. Newman, I.A.: Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. — Plant Cell Environ. 24: 1–14, 2001.PubMedCrossRefGoogle Scholar
  22. Nishizono, H., Ichikawa, H., Suziki, S., Ishii, F.: The role of the root cell-wall in the heavy-metal tolerance of Athyrium yokoscense. — Plant Soil 101: 15–20, 1987.CrossRefGoogle Scholar
  23. Pahlsson, A.M.B.: Toxicity of heavy-metals (Zn, Cu, Cd, Pb) to vascular plants — a literature-review. — Water Air Soil Pollut. 47: 287–319, 1989.CrossRefGoogle Scholar
  24. Paktunc, D., Foster, A., Heald, S., Laflamme, G.: Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. — Geochim. cosmochim. Acta 68: 969–983, 2004.CrossRefGoogle Scholar
  25. Pickering, I.J., Wright, C., Bubner, B., Ellis, D., Persans, M.W., Yu, E.Y., George, G.N., Prince, R.C., Salt, D.E.: Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. — Plant Physiol. 131: 1460–1467, 2003.PubMedCrossRefGoogle Scholar
  26. Ressler, T.: WinXAS: A new software package not only for the analysis of energy-dispersive XAS data. — J. Phys. IV. 7: 269–270, 1997.Google Scholar
  27. Sarret, G., Vangronsveld, J., Manceau, A., Musso, M., D’Haen, J., Menthonnex, J.J., Hazemann, J.L.: Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. — Environ. Sci. Technol. 35: 2854–2859, 2001.PubMedCrossRefGoogle Scholar
  28. Shi, J.Y., Chen, Y.X., Huang, Y.Y., He, W.: SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. — Micron 35: 557–564, 2004.PubMedCrossRefGoogle Scholar
  29. Shi, J.Y., Yuan, X.F., Chen, X.C., Wu, B., Huang, Y.Y., Chen, Y.X.: Copper uptake and its effect on metals distribution in root growth zones of Commelina communis revealed by SRXRF. — Biol. trace Element Res. 141: 294–304, 2011.CrossRefGoogle Scholar
  30. Tian, S.K., Lu, L.L., Yang, X.O., Webb, S.M., Du, Y.H., Brown, P.H.: Spatial imaging and speciation of lead in the accumulator plant Sedum affredii by microscopically focused synchrotron X-ray investigation. — Environ. Sci. Technol. 44: 5920–5926, 2010.PubMedCrossRefGoogle Scholar
  31. Tao, S., Liu, W.X., Chen, Y.J., Xu, F.L., Dawson, R.W., Li, B.G., Cao, J., Wang, X.J., Hu, J.Y., Fang, J.Y.: Evaluation of factors influencing root-induced changes of copper fractionation in rhizosphere of a calcareous soil. — Environ. Pollut. 129: 5–12, 2004.PubMedCrossRefGoogle Scholar
  32. Verbruggen, N., Hermans, C., Schat, H.: Molecular mechanisms of metal hyperaccumulation in plants. — New Phytol. 181: 759–776, 2009.PubMedCrossRefGoogle Scholar
  33. Walker, T.S., Bais, H.P., Grotewold, E., Vivanco, J.M.: Root exudation and rhizosphere biology. — Plant Physiol. 132: 44–51, 2003.PubMedCrossRefGoogle Scholar
  34. Yamaoka, W., Takada, S., Takehisa, H., Hayashi, Y., Hokura, A., Terada, Y., Abe, T., Nakai, I.: Study on accumulation mechanism of cadmium in rice (Oriza sativa L.) by micro-XRF imaging and X-ray absorption fine structure analysis utilizing synchrotron radiation. — Bunseki Kagaku 59: 463–475, 2010.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. Song
    • 1
  • Y. Q. Yang
    • 1
    • 2
  • S. H. Zhu
    • 1
  • G. C. Chen
    • 1
  • X. F. Yuan
    • 3
  • T. T. Liu
    • 1
  • X. H. Yu
    • 4
  • J. Y. Shi
    • 1
  1. 1.Department of Environmental Engineering, Zijingang CampusZhejiang UniversityHangzhouP.R. China
  2. 2.Beijing Construction Engineering Environmental Remediation CompanyBeijingP.R. China
  3. 3.College of Life ScienceZhejiang Chinese Medical UniversityHangzhouP.R. China
  4. 4.Institute of Applied PhysicsChinese Academy of ScienceShanghaiP.R. China

Personalised recommendations