Advertisement

Biologia Plantarum

, Volume 57, Issue 3, pp 401–409 | Cite as

In vitro flowering red miniature rose

  • S. Zeng
  • S. Liang
  • Y. Y. Zhang
  • K. L. Wu
  • J. A. Teixeira da Silva
  • J. Duan
Article

Abstract

Using aseptic plantlets obtained from stem node explants of hybrid red miniature rose (Rosa hybrida cv. Fairy Dance), the effects of shoot physiological status, medium ingredients, and culture thermoperiod on in vitro flowering were evaluated. Shoot height, subculture media for shoot multiplication, sucrose concentration, plant growth regulators (PGRs), mineral substances in media, and thermoperiod had a significant effect on the percentage of in vitro flowering. Shoots 3 ± 0.2 or 2 ± 0.2 cm in height cultured on Murashige and Skoog (MS) medium containing 2.0 mg dm−3 6-benzyladenine (BA), 0.2 mg dm−3 α-naphthaleneacetic acid (NAA), and 20 g dm−3 sucrose were more suitable for in vitro flowering than shoots 4 ± 0.2, or 5 ± 0.2 cm in height. The most suitable sucrose concentration for in vitro flowering was 50 g dm−3 and the most suitable PGRs were a combination of 3.0 mg dm−3 BA and 0.1 mg dm−3 NAA. Increasing the potassium nitrate to ammonium nitrate ratio or increasing the phosphate concentration in MS medium had a positive effect on in vitro flowering. The percentage of in vitro flowering was significantly higher at day/night temperature of 28/20 °C than at other constant temperatures. The percentage of in vitro flowering shoots reached 68.33 % despite the occurrence of abnormal flowers and some unique developmental patterns. It makes miniature rose a potentially new in vitro experimental platform for research on the molecular mechanisms of flowering ornamental plants.

Additional key words

abnormal flower auxins cytokinins minerals Rosa hybrida thermoperiod 

Abbreviations

BA

6-benzyladenine

DMRT

Duncan’s multiple range test

IBA

indole-3-butyric acid

KIN

kinetin

MS

Murashige and Skoog medium

NAA

α-naphthaleneacetic acid

PGR

plant growth regulator

PPFD

photosynthetic photon flux density

TDZ

thidiazuron

ZT

zeatin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernier, G., Havelange, A., Houssa, C., Petitjean, A., Lejeune, P.: Physiological signs that induce flowering. — Plant Cell. 5: 1147–1155, 1993.PubMedGoogle Scholar
  2. Carelli, B.P., Echeverrigaray, S.: An improved system for the in vitro propagation of rose cultivars. — Sci. Hort. 92: 69–74, 2002.CrossRefGoogle Scholar
  3. Causier, B., Schwarz-Sommer, Z., Davies, B.: Floral organ identity: 20 years of ABCs. — Cell Dev. Biol. 21: 73–79, 2010.CrossRefGoogle Scholar
  4. Chen, W.S., Liu, H.Y., Liu, Z.H., Yang, L., Chen, W.H.: Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. — Physiol. Plant. 90: 391–395, 1994.CrossRefGoogle Scholar
  5. Chia, T.F., Arditti, J., Segeren, M.I., Hew, C.S.: Review: In vitro flowering of orchids. — Lindleyana 14: 60–76, 1999.Google Scholar
  6. Chiu, Y.T., Lin C.S., Chang, C.: In vitro fruiting and seed production in Erycina pusilla. — Propag. Ornam. Plants 11: 131–136. 2011Google Scholar
  7. Coen, E.S., Meyerowitz, E.M.: The war of the whorls: genetic interactions controlling flower development. — Nature 353: 31–37, 1991.PubMedCrossRefGoogle Scholar
  8. Deb, C.R., Sungkumlong, ??.: Rapid multiplication and induction of early in vitro flowering in Dendrobium primulinum Lindl. — J. Plant Biochem. Biotechnol. 18: 241–244, 2009.CrossRefGoogle Scholar
  9. Dielen, V., Lecouvet, V., Dupont, S., Kinet, J.M.: In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutant. — J. exp. Bot. 52: 715–723, 2001PubMedGoogle Scholar
  10. Douglas, G.C., Rutledge, C.B., Casey, A.D., Richardson, D.H.S.: Micropropagation of floribunda, ground cover and miniature roses. — Plant Cell Tissue Organ Cult. 19: 55–64, 1989.CrossRefGoogle Scholar
  11. Duan, J.X., Yazawa, S.: In vitro floral development in × Doriella Tiny (Doritis pulcherrima × Kingiella philippinensis). — Sci. Hort. 59: 253–264, 1994.CrossRefGoogle Scholar
  12. Duan, J.X., Yazawa, S.: Floral induction and development in Phalaenopsis in vitro. — Plant Cell Tissue Organ Cult. 43: 71–74, 1995.CrossRefGoogle Scholar
  13. Giuliano, G., Bartley, G.E., Scolnik, P.A.: Regulation of carotenoid biosynthesis during tomato development. — Plant Cell 5: 379–387, 1993.PubMedGoogle Scholar
  14. Goh, C.J., Yang, A.L.: Effects of growth regulators and decapitation on flowering of Dendrobium orchid hybrids. — Plant Sci. Lett. 12: 287–--, 1978.CrossRefGoogle Scholar
  15. Hee, K.H., Loh, C.S., Yeoh, H.H. Early in vitro flowering and seed production in culture in Dendrobium Chao Praya Smile (Orchidaceae). — Plant Cell Rep. 26: 2055–2062, 2007.PubMedCrossRefGoogle Scholar
  16. Ishimori, T., Niimi, Y., Han, D.S.: In vitro flowering of Lilium rubellum Baker. — Sci. Hort. 120: 246–249, 2009.CrossRefGoogle Scholar
  17. Kachonpadungkitti, Y., Romchatngoen, S., Hasegawa, K., Hisajima, S.: Efficient flower induction from cultured buckwheat (Fagopyrum esculentum L.) node segments in vitro. — Plant Growth Regul. 35: 37–45, 2001.CrossRefGoogle Scholar
  18. Khosh-Khui, M., Teixeira da Silva, J.A.: In vitro culture of Rosa species. — In: Teixeira da Silva, J.A. (ed.): Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st Ed., Vol. II). Pp. 514–526. Global Science Books, Isleworth 2006.Google Scholar
  19. Kintzios, S., Michaelakis, A.: Induction of somatic embryogenesis and in vitro flowering from inflorescence of chamomile (Chamomilla recutita L.). — Plant Cell Rep. 18: 684–690, 1999.CrossRefGoogle Scholar
  20. Kostenyuk, I., Oh, B.J., So, I.S.: Induction of early flowering in Cymbidium niveo-marginatum Mak in vitro. — Plant Cell Rep. 19: 1–5, 1999.CrossRefGoogle Scholar
  21. Lin, C.C., Lin, C.S., Chang, W.C.: In vitro flowering of Bambusa edulis and subsequent plantlet survival. — Plant Cell Tissue Organ Cult. 72: 71–78, 2003.CrossRefGoogle Scholar
  22. Lin, C.S., Lin, C.C., Chang, W.C.: Effect of thidiazuron on vegetative tissue-derived somatic embryogenesis and flowering of bamboo Bambusa edulis. — Plant Cell Tissue Organ Cult. 76: 75–82, 2004.CrossRefGoogle Scholar
  23. Luo, P., Ye, Q.E., Lan, Z.Q.: A study on floral biology in vitro in Orichophragmus violaceus: induction of flowers in seedlings of O. violaceus cultured in vitro. — Plant Cell Tissue Organ Cult. 63: 73–75, 2000.CrossRefGoogle Scholar
  24. MacPhail, V.J., Kevan, P.G.: Review of the breeding systems of wild roses (Rosa spp.). — In: Zlesak, D.C. (ed.): Roses. Pp. 1–13. Floriculture Ornamental Biotechnology, location?? 2009. book or journal? Google Scholar
  25. McDaniel, C.N.: Developmental physiology of floral initiation in Nicotiana tabacum L. — J. exp. Bot. 47: 465–475, 1996.CrossRefGoogle Scholar
  26. Mimida, N., Li, J., Zhang, C., Moriya, S., Moriya-Tanaka, Y., Iwanami, H., Honda, C., Oshino, H., Takagishi., K., Suzuki., A., Komori, S., Wada, M.: Divergence of TERMINAL FLOWERI-like genes in Rosaceae. — Biol. Plant. 56: 465–472, 2012.CrossRefGoogle Scholar
  27. Mohapatra, A., Rout, G.R., Das, P.: Rapid clonal propagation from nodal explants and in vitro flowering of three rose cultivars. — Propag. Ornam. Plants 5: 219–223, 2005.Google Scholar
  28. Mondal, S., Teixeira da Silva, J.A., Ghosh, P.D.: In vitro flowering in Rauwolfia serpentina (L.) Benth. ex. Kurz. — Int. J. Plant Dev. Biol. 5: 75–77, 2011.Google Scholar
  29. Murashige, T., Skoog, F.: A revised medium for rapid growth and bio-assays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  30. Pati, P.K., Rath, S.P., Sharma, M., Sood, A., Ahuja, P.S.: In vitro propagation of rose — a review. — Biotechnol. Adv. 24: 94–114, 2006.PubMedCrossRefGoogle Scholar
  31. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., Yanofsky, M.F.: B and C floral organ identity functions require SEPALLATA MADS-box genes. — Nature 405: 200–203, 2000.PubMedCrossRefGoogle Scholar
  32. Sakanishi, Y., Imanishi, H., Ishida, G.: Effect of temperature on growth and flowering of Phalaenopsis amabilis. — Bull Univ. Osaka Pref. Ser. B 32: 1–9, 1980.Google Scholar
  33. Saritha, K.V., Naidu, C.V.: In vitro flowering of Withania somnifera Dunal. — An important antitumor medicinal plant. — Plant Sci. 172: 847–851, 2007.CrossRefGoogle Scholar
  34. Saxena, S.N., Kaushik, N., Sharma, R.: Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. — Biol Plant. 52:181–183, 2008.CrossRefGoogle Scholar
  35. Scorza, R.: In vitro flowering: a review. — HortScience 4: 106–127, 1982.Google Scholar
  36. Sim, G.E., Loh, C.S., Goh, C.J.: High frequency early in vitro flowering of Dendrobium Madame Thong-In (Orchidaceae). — Plant Cell Rep. 26: 383–393, 2007.PubMedCrossRefGoogle Scholar
  37. Sridhar, T.M., Naidu, C.V.: High frequency plant regeneration, in vitro flowering of Solanum nigrus (L.) — An important antiulcer medicinal plant. — J. Phytol. 3: 85–93, 2011.Google Scholar
  38. Sudhakaran, S., Sivasankari, V.: In vitro flowering response of Ocimum basilicum L. — J. Plant Biotechnol. 4: 181–183, 2002.Google Scholar
  39. Sudhakaran, S., Teixeira da Silva, J.A., Sreeramanan, S.: Test tube bouquets — in vitro flowering. — In: Teixeira da Silva, J.A. (ed.): Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st Ed., Vol II). Pp. 336–346, Global Science Books, Isleworth 2006.Google Scholar
  40. Tanaka, Y., Tsuda, S., Kusumi, T.: Metabolic engineering to modify flower color. — Plant Cell Physiol. 39: 1119–1126, 1998.CrossRefGoogle Scholar
  41. Tanimoto, S., Harada, H.: Effects of IAA, zeatin, ammonium nitrate and sucrose on the initiation and development of floral buds in Torenia stem segments cultured in vitro. — Plant Cell Physiol. 22: 1553–1560, 1981.Google Scholar
  42. Taylor, N.J., Van Staden, J.: Towards an understanding of the manipulation of in vitro flowering. In: Teixeira da Silva J.A. (ed.): Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st Ed., Vol IV). Pp. 1–22. Global Science Books, Isleworth 2006.Google Scholar
  43. Tee, C.S., Maziah, M., Tan, C.S.: Induction of in vitro flowering in the orchid Dendrobium Sonia 17. — Biol Plant. 52: 723–726, 2008.CrossRefGoogle Scholar
  44. Teixeira da Silva, J.A., Nhut, D.T.: Thin cell layers and floral morphogenesis, floral genetics and in vitro flowering. — In: Nhut, D.T., Le, B.V., Van Thorpe, T. (ed.): Thin Cell Layer Culture System: Regeneration and Transformation Applications. Pp. 285–342. Kluwer Academic Publishers, Dordrecht 2003.CrossRefGoogle Scholar
  45. Vaz, A.P.A., Figueiredo-Ribeiro, R.C.L., Kerbauy, G.B.: Photoperiod and temperature effects on in vitro growth and flowering of P. pusilla an epiphytic orchid. — Plant Physiol. Biochem. 42: 411–415, 2004.PubMedCrossRefGoogle Scholar
  46. Vu, N.H., Anh, P.H., Nhut, D.T.: The role of sucrose and different cytokinins in the in vitro floral morphogenesis of rose (hybrid tea) cv.” First Prize”. — Plant Cell Tissue Organ Cult. 87: 315–320, 2006.CrossRefGoogle Scholar
  47. Wang, G.Y., Xu, Z.H., Chia, T.F., Chua, N.H.: In vitro flowering of orchid (Dendrobium candidum). In: You, C.B. (ed.): Biotechnology in Agriculture. Pp. 373–378. Kluwer Academic Publishers, Dordrecht 1993.CrossRefGoogle Scholar
  48. Wang, G.Y., Xu, Z.H., Cai, D.F., Cai, N.H.: In vitro flowering of Dendrobium candidum. — Sci. Chin. (Ser. C) 27: 229–234, 1997.Google Scholar
  49. Wang, G.Y., Yuan, M.F., Hong, Y.: In vitro flower induction in roses. — In Vitro Cell. Dev. Biol. Plant 38: 513–518, 2002.CrossRefGoogle Scholar
  50. Wang, S., Tang, L., Chen, F.: In vitro flowering of bitter melon. — Plant Cell Rep. 20: 393–397, 2001.CrossRefGoogle Scholar
  51. Wang, Z.H., Wang, L., Ye, Q.S. High frequency early flowering from in vitro seedlings of Dendrobium nobile. — Sci. Hort. 122: 328–331, 2009.CrossRefGoogle Scholar
  52. Weiss, D., Van der Luit, A., Knegt, E., Vermeer, E., Mol, gibberellins in petunia flowers. Induction of anthocyanin biosynthetic gene expression and the antagonistic effect of abscisic acid. — Plant. Physiol. 107: 695–702, 1995.PubMedGoogle Scholar
  53. Wilmowicz, E., Frankowski, K., Glazińska, P., Kęsy, J., Wojciechowski, W., Kopcewicz, J.: Cross talk between phytohormones in the regulation of flower induction in Pharbitis nil. — Biol. Plant. 55: 757–760, 2011.CrossRefGoogle Scholar
  54. Yonekura-Sakakibara, K., Nakayama, T., Yamazaki, M., Saito, K.: Modification and stabilization of anthocyanins. — In: Gould, K., Davies, K., Winefield, C. (ed.): Anthocyanins, Biosynthesis, Functions, and Applications. Pp. 169–190. Springer, Berlin — New York 2009.Google Scholar
  55. Ziv, M., Naor, V.: Flowering of geophytes in vitro. — Propag. Ornam. Plants. 6: 3–16, 2006.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Zeng
    • 1
  • S. Liang
    • 1
    • 3
  • Y. Y. Zhang
    • 1
    • 3
  • K. L. Wu
    • 1
  • J. A. Teixeira da Silva
    • 4
  • J. Duan
    • 1
    • 2
  1. 1.Key Laboratory of South China Agricultural Plant Genetics and BreedingSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
  2. 2.Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Faculty of Agriculture and Graduate School of AgricultureKagawa UniversityMiki-cho, KagawaJapan

Personalised recommendations