Skip to main content
Log in

In vitro flowering red miniature rose

  • Published:
Biologia Plantarum

Abstract

Using aseptic plantlets obtained from stem node explants of hybrid red miniature rose (Rosa hybrida cv. Fairy Dance), the effects of shoot physiological status, medium ingredients, and culture thermoperiod on in vitro flowering were evaluated. Shoot height, subculture media for shoot multiplication, sucrose concentration, plant growth regulators (PGRs), mineral substances in media, and thermoperiod had a significant effect on the percentage of in vitro flowering. Shoots 3 ± 0.2 or 2 ± 0.2 cm in height cultured on Murashige and Skoog (MS) medium containing 2.0 mg dm−3 6-benzyladenine (BA), 0.2 mg dm−3 α-naphthaleneacetic acid (NAA), and 20 g dm−3 sucrose were more suitable for in vitro flowering than shoots 4 ± 0.2, or 5 ± 0.2 cm in height. The most suitable sucrose concentration for in vitro flowering was 50 g dm−3 and the most suitable PGRs were a combination of 3.0 mg dm−3 BA and 0.1 mg dm−3 NAA. Increasing the potassium nitrate to ammonium nitrate ratio or increasing the phosphate concentration in MS medium had a positive effect on in vitro flowering. The percentage of in vitro flowering was significantly higher at day/night temperature of 28/20 °C than at other constant temperatures. The percentage of in vitro flowering shoots reached 68.33 % despite the occurrence of abnormal flowers and some unique developmental patterns. It makes miniature rose a potentially new in vitro experimental platform for research on the molecular mechanisms of flowering ornamental plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BA:

6-benzyladenine

DMRT:

Duncan’s multiple range test

IBA:

indole-3-butyric acid

KIN:

kinetin

MS:

Murashige and Skoog medium

NAA:

α-naphthaleneacetic acid

PGR:

plant growth regulator

PPFD:

photosynthetic photon flux density

TDZ:

thidiazuron

ZT:

zeatin

References

  • Bernier, G., Havelange, A., Houssa, C., Petitjean, A., Lejeune, P.: Physiological signs that induce flowering. — Plant Cell. 5: 1147–1155, 1993.

    PubMed  CAS  Google Scholar 

  • Carelli, B.P., Echeverrigaray, S.: An improved system for the in vitro propagation of rose cultivars. — Sci. Hort. 92: 69–74, 2002.

    Article  CAS  Google Scholar 

  • Causier, B., Schwarz-Sommer, Z., Davies, B.: Floral organ identity: 20 years of ABCs. — Cell Dev. Biol. 21: 73–79, 2010.

    Article  CAS  Google Scholar 

  • Chen, W.S., Liu, H.Y., Liu, Z.H., Yang, L., Chen, W.H.: Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. — Physiol. Plant. 90: 391–395, 1994.

    Article  CAS  Google Scholar 

  • Chia, T.F., Arditti, J., Segeren, M.I., Hew, C.S.: Review: In vitro flowering of orchids. — Lindleyana 14: 60–76, 1999.

    Google Scholar 

  • Chiu, Y.T., Lin C.S., Chang, C.: In vitro fruiting and seed production in Erycina pusilla. — Propag. Ornam. Plants 11: 131–136. 2011

    Google Scholar 

  • Coen, E.S., Meyerowitz, E.M.: The war of the whorls: genetic interactions controlling flower development. — Nature 353: 31–37, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Deb, C.R., Sungkumlong, ??.: Rapid multiplication and induction of early in vitro flowering in Dendrobium primulinum Lindl. — J. Plant Biochem. Biotechnol. 18: 241–244, 2009.

    Article  CAS  Google Scholar 

  • Dielen, V., Lecouvet, V., Dupont, S., Kinet, J.M.: In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutant. — J. exp. Bot. 52: 715–723, 2001

    PubMed  CAS  Google Scholar 

  • Douglas, G.C., Rutledge, C.B., Casey, A.D., Richardson, D.H.S.: Micropropagation of floribunda, ground cover and miniature roses. — Plant Cell Tissue Organ Cult. 19: 55–64, 1989.

    Article  Google Scholar 

  • Duan, J.X., Yazawa, S.: In vitro floral development in × Doriella Tiny (Doritis pulcherrima × Kingiella philippinensis). — Sci. Hort. 59: 253–264, 1994.

    Article  Google Scholar 

  • Duan, J.X., Yazawa, S.: Floral induction and development in Phalaenopsis in vitro. — Plant Cell Tissue Organ Cult. 43: 71–74, 1995.

    Article  Google Scholar 

  • Giuliano, G., Bartley, G.E., Scolnik, P.A.: Regulation of carotenoid biosynthesis during tomato development. — Plant Cell 5: 379–387, 1993.

    PubMed  CAS  Google Scholar 

  • Goh, C.J., Yang, A.L.: Effects of growth regulators and decapitation on flowering of Dendrobium orchid hybrids. — Plant Sci. Lett. 12: 287–--, 1978.

    Article  CAS  Google Scholar 

  • Hee, K.H., Loh, C.S., Yeoh, H.H. Early in vitro flowering and seed production in culture in Dendrobium Chao Praya Smile (Orchidaceae). — Plant Cell Rep. 26: 2055–2062, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ishimori, T., Niimi, Y., Han, D.S.: In vitro flowering of Lilium rubellum Baker. — Sci. Hort. 120: 246–249, 2009.

    Article  CAS  Google Scholar 

  • Kachonpadungkitti, Y., Romchatngoen, S., Hasegawa, K., Hisajima, S.: Efficient flower induction from cultured buckwheat (Fagopyrum esculentum L.) node segments in vitro. — Plant Growth Regul. 35: 37–45, 2001.

    Article  CAS  Google Scholar 

  • Khosh-Khui, M., Teixeira da Silva, J.A.: In vitro culture of Rosa species. — In: Teixeira da Silva, J.A. (ed.): Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st Ed., Vol. II). Pp. 514–526. Global Science Books, Isleworth 2006.

    Google Scholar 

  • Kintzios, S., Michaelakis, A.: Induction of somatic embryogenesis and in vitro flowering from inflorescence of chamomile (Chamomilla recutita L.). — Plant Cell Rep. 18: 684–690, 1999.

    Article  CAS  Google Scholar 

  • Kostenyuk, I., Oh, B.J., So, I.S.: Induction of early flowering in Cymbidium niveo-marginatum Mak in vitro. — Plant Cell Rep. 19: 1–5, 1999.

    Article  CAS  Google Scholar 

  • Lin, C.C., Lin, C.S., Chang, W.C.: In vitro flowering of Bambusa edulis and subsequent plantlet survival. — Plant Cell Tissue Organ Cult. 72: 71–78, 2003.

    Article  CAS  Google Scholar 

  • Lin, C.S., Lin, C.C., Chang, W.C.: Effect of thidiazuron on vegetative tissue-derived somatic embryogenesis and flowering of bamboo Bambusa edulis. — Plant Cell Tissue Organ Cult. 76: 75–82, 2004.

    Article  CAS  Google Scholar 

  • Luo, P., Ye, Q.E., Lan, Z.Q.: A study on floral biology in vitro in Orichophragmus violaceus: induction of flowers in seedlings of O. violaceus cultured in vitro. — Plant Cell Tissue Organ Cult. 63: 73–75, 2000.

    Article  CAS  Google Scholar 

  • MacPhail, V.J., Kevan, P.G.: Review of the breeding systems of wild roses (Rosa spp.). — In: Zlesak, D.C. (ed.): Roses. Pp. 1–13. Floriculture Ornamental Biotechnology, location?? 2009. book or journal?

  • McDaniel, C.N.: Developmental physiology of floral initiation in Nicotiana tabacum L. — J. exp. Bot. 47: 465–475, 1996.

    Article  CAS  Google Scholar 

  • Mimida, N., Li, J., Zhang, C., Moriya, S., Moriya-Tanaka, Y., Iwanami, H., Honda, C., Oshino, H., Takagishi., K., Suzuki., A., Komori, S., Wada, M.: Divergence of TERMINAL FLOWERI-like genes in Rosaceae. — Biol. Plant. 56: 465–472, 2012.

    Article  CAS  Google Scholar 

  • Mohapatra, A., Rout, G.R., Das, P.: Rapid clonal propagation from nodal explants and in vitro flowering of three rose cultivars. — Propag. Ornam. Plants 5: 219–223, 2005.

    Google Scholar 

  • Mondal, S., Teixeira da Silva, J.A., Ghosh, P.D.: In vitro flowering in Rauwolfia serpentina (L.) Benth. ex. Kurz. — Int. J. Plant Dev. Biol. 5: 75–77, 2011.

    Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bio-assays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Pati, P.K., Rath, S.P., Sharma, M., Sood, A., Ahuja, P.S.: In vitro propagation of rose — a review. — Biotechnol. Adv. 24: 94–114, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., Yanofsky, M.F.: B and C floral organ identity functions require SEPALLATA MADS-box genes. — Nature 405: 200–203, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sakanishi, Y., Imanishi, H., Ishida, G.: Effect of temperature on growth and flowering of Phalaenopsis amabilis. — Bull Univ. Osaka Pref. Ser. B 32: 1–9, 1980.

    Google Scholar 

  • Saritha, K.V., Naidu, C.V.: In vitro flowering of Withania somnifera Dunal. — An important antitumor medicinal plant. — Plant Sci. 172: 847–851, 2007.

    Article  CAS  Google Scholar 

  • Saxena, S.N., Kaushik, N., Sharma, R.: Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. — Biol Plant. 52:181–183, 2008.

    Article  CAS  Google Scholar 

  • Scorza, R.: In vitro flowering: a review. — HortScience 4: 106–127, 1982.

    CAS  Google Scholar 

  • Sim, G.E., Loh, C.S., Goh, C.J.: High frequency early in vitro flowering of Dendrobium Madame Thong-In (Orchidaceae). — Plant Cell Rep. 26: 383–393, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Sridhar, T.M., Naidu, C.V.: High frequency plant regeneration, in vitro flowering of Solanum nigrus (L.) — An important antiulcer medicinal plant. — J. Phytol. 3: 85–93, 2011.

    CAS  Google Scholar 

  • Sudhakaran, S., Sivasankari, V.: In vitro flowering response of Ocimum basilicum L. — J. Plant Biotechnol. 4: 181–183, 2002.

    Google Scholar 

  • Sudhakaran, S., Teixeira da Silva, J.A., Sreeramanan, S.: Test tube bouquets — in vitro flowering. — In: Teixeira da Silva, J.A. (ed.): Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st Ed., Vol II). Pp. 336–346, Global Science Books, Isleworth 2006.

    Google Scholar 

  • Tanaka, Y., Tsuda, S., Kusumi, T.: Metabolic engineering to modify flower color. — Plant Cell Physiol. 39: 1119–1126, 1998.

    Article  CAS  Google Scholar 

  • Tanimoto, S., Harada, H.: Effects of IAA, zeatin, ammonium nitrate and sucrose on the initiation and development of floral buds in Torenia stem segments cultured in vitro. — Plant Cell Physiol. 22: 1553–1560, 1981.

    CAS  Google Scholar 

  • Taylor, N.J., Van Staden, J.: Towards an understanding of the manipulation of in vitro flowering. In: Teixeira da Silva J.A. (ed.): Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st Ed., Vol IV). Pp. 1–22. Global Science Books, Isleworth 2006.

    Google Scholar 

  • Tee, C.S., Maziah, M., Tan, C.S.: Induction of in vitro flowering in the orchid Dendrobium Sonia 17. — Biol Plant. 52: 723–726, 2008.

    Article  CAS  Google Scholar 

  • Teixeira da Silva, J.A., Nhut, D.T.: Thin cell layers and floral morphogenesis, floral genetics and in vitro flowering. — In: Nhut, D.T., Le, B.V., Van Thorpe, T. (ed.): Thin Cell Layer Culture System: Regeneration and Transformation Applications. Pp. 285–342. Kluwer Academic Publishers, Dordrecht 2003.

    Chapter  Google Scholar 

  • Vaz, A.P.A., Figueiredo-Ribeiro, R.C.L., Kerbauy, G.B.: Photoperiod and temperature effects on in vitro growth and flowering of P. pusilla an epiphytic orchid. — Plant Physiol. Biochem. 42: 411–415, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Vu, N.H., Anh, P.H., Nhut, D.T.: The role of sucrose and different cytokinins in the in vitro floral morphogenesis of rose (hybrid tea) cv.” First Prize”. — Plant Cell Tissue Organ Cult. 87: 315–320, 2006.

    Article  CAS  Google Scholar 

  • Wang, G.Y., Xu, Z.H., Chia, T.F., Chua, N.H.: In vitro flowering of orchid (Dendrobium candidum). In: You, C.B. (ed.): Biotechnology in Agriculture. Pp. 373–378. Kluwer Academic Publishers, Dordrecht 1993.

    Chapter  Google Scholar 

  • Wang, G.Y., Xu, Z.H., Cai, D.F., Cai, N.H.: In vitro flowering of Dendrobium candidum. — Sci. Chin. (Ser. C) 27: 229–234, 1997.

    Google Scholar 

  • Wang, G.Y., Yuan, M.F., Hong, Y.: In vitro flower induction in roses. — In Vitro Cell. Dev. Biol. Plant 38: 513–518, 2002.

    Article  CAS  Google Scholar 

  • Wang, S., Tang, L., Chen, F.: In vitro flowering of bitter melon. — Plant Cell Rep. 20: 393–397, 2001.

    Article  CAS  Google Scholar 

  • Wang, Z.H., Wang, L., Ye, Q.S. High frequency early flowering from in vitro seedlings of Dendrobium nobile. — Sci. Hort. 122: 328–331, 2009.

    Article  CAS  Google Scholar 

  • Weiss, D., Van der Luit, A., Knegt, E., Vermeer, E., Mol, gibberellins in petunia flowers. Induction of anthocyanin biosynthetic gene expression and the antagonistic effect of abscisic acid. — Plant. Physiol. 107: 695–702, 1995.

    PubMed  CAS  Google Scholar 

  • Wilmowicz, E., Frankowski, K., Glazińska, P., Kęsy, J., Wojciechowski, W., Kopcewicz, J.: Cross talk between phytohormones in the regulation of flower induction in Pharbitis nil. — Biol. Plant. 55: 757–760, 2011.

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara, K., Nakayama, T., Yamazaki, M., Saito, K.: Modification and stabilization of anthocyanins. — In: Gould, K., Davies, K., Winefield, C. (ed.): Anthocyanins, Biosynthesis, Functions, and Applications. Pp. 169–190. Springer, Berlin — New York 2009.

    Google Scholar 

  • Ziv, M., Naor, V.: Flowering of geophytes in vitro. — Propag. Ornam. Plants. 6: 3–16, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Duan.

Additional information

Acknowledgements: This study was supported by the Guangdong Key Technology Research and Development Program (2011B020304004; 2010B060200037) and by a fund to the Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences (211026). The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, S., Liang, S., Zhang, Y.Y. et al. In vitro flowering red miniature rose. Biol Plant 57, 401–409 (2013). https://doi.org/10.1007/s10535-013-0306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-013-0306-4

Additional key words

Navigation