Advertisement

Biologia Plantarum

, Volume 57, Issue 2, pp 201–209 | Cite as

Recent advances in molecular events of fruit abscission

  • R. J. Xie
  • L. Deng
  • L. Jing
  • S. L. He
  • Y. T. Ma
  • S. L. Yi
  • Y. Q. Zheng
  • L. Zheng
Review

Abstract

It is widely accepted that fruit abscission is a highly regulated developmental process that is both influenced and activated in response to changing environment and plays crucial roles in the health and reproductive success of plants. Recent evidences showed that numerous genes related to metabolic and signalling pathways were coordinately implicated in regulating fruit abscission. Cross talks within hormones, between saccharides and hormones, as well as between polyamines and ethylene result in synergetic or antagonistic interactions which together play an important role in adjusting fruit abscission. Although hormones are the most studied internal factors related to abscission, the role of saccharides and polyamines during fruit abscission is emerging now. The characterizations of the molecular mechanisms of regulating fruit abscission are essential to develop effective strategies for controlling this process in plants.

Additional key words

abscisic acid cross talk ethylene gibberellic acid indole acetic acid jasmonic acid polyamines saccharides 

Abbreviations

ABA

abscisic acid

ACC

1-aminocyclopropane-1-carboxylic acid

ACO

1-aminocyclopropane-1-carboxylic acid oxidase

ACS

1-aminocyclopropane-1-carboxylic acid synthase

ADC

arginine decarboxylase

ADE

adenylate

AFLP

amplified fragment length polymorphism

AVG

aminoethoxyvinylglycine

AZ

abscission zone

CMNP

5-chloro-3-methyl-4-nitro-1H-pyrazole

DAO

diamine oxidase

D-SAM

decarboxylated S-adenosyl methionine

EG

β-1,4-glucanase

GA

gibberellin

HXK

hexokinase

IAA

indole acetic acid

JA

jasmonate

LOX

lipoxygenase

LTP

lipid transfer protein

MCP

1-methylcyclopropane

MTA

5′-methylthioribose

NAA

naphthaleneacetic acid

NO

nitric oxide

ODC

ornithine decarboxylase

PA

polyamine

PAO

polyamine oxidase

PAT

polar auxin transport

PG

polygalacturonase

PLA2

phospholipase A2

Put

putrescine

ROS

reactive oxygen species

SAM

S-adenosyl methionine

SAMDC

S-adenosyl methionine decarboxylase

S6PDH

D-sorbitol-6-phosphate dehydrogenase

Spd

spermidine

SPDS

spermidine synthase

Spm

spermine

TFs

transcription factors

TPS

trehalose-6-phosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alburquerque, N., Egea, J., Burgos, L., Martínez-Romero, D., Valero, D., Serrano, M.: The influence of polyamines on apricot ovary development and fruit set. — Ann. appl. Biol. 149: 27–33, 2006.CrossRefGoogle Scholar
  2. Alferez, F., Singh, S., Umbach, A.L., Hochema, B., Burns, J.: Citrus abscission and Arabidopsis plant decline in response to 5-chloro-3-methyl-4-nitro-1H-pyrazole are mediated by lipid signaling. — Plant Cell Environ. 28: 1436–1449, 2005.CrossRefGoogle Scholar
  3. Alferez, F., Zhong, G.Y., Burns, J.K.: A citrus abscission agent induces anoxia- and senescence-related gene expression in Arabidopsis. — J. exp. Bot. 58: 2451–2462, 2007.PubMedCrossRefGoogle Scholar
  4. Aziz, A., Brun, O., Audran, J.C.: Involvement of polyamines in the control of fruitlet physiological abscission in grapevine (Vitis vinifera). — Physiol. Plant. 113: 50–58, 2001.CrossRefGoogle Scholar
  5. Bangerth, F.: Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators. — Plant Growth Regul. 31: 43–59, 2000.CrossRefGoogle Scholar
  6. Blanusa, T., Else, M.A., Atkinson, C.J., Davies, W.J.: The regulation of sweet cherry fruit abscission by polar auxin transport. — Plant Growth Regul. 45: 189–198, 2005.CrossRefGoogle Scholar
  7. Bleecker, A.B., Patterson, S.E.: Last exit: senescene, abscission and meristem arrest in Arabidopsis. — Plant Cell 9: 1169–1179, 1997.PubMedCrossRefGoogle Scholar
  8. Botton, A., Eccher, G., Forcato, C., Ferrarini, A., Begheldo, M., Zermiani, M., Moscatello, S., Battistelli, A., Velasco, R., Ruperti, B., Ramina, A.: Signaling pathways mediating the induction of apple fruitlet abscission. — Plant Physiol. 155: 185–208, 2011.PubMedCrossRefGoogle Scholar
  9. Chen, H.Q., Dekkers, K.L.: Evaluation of growth regulator inhibitors for controlling postbloom fruit drop (PFD) of citrus induced by the fungus Colletotrichum acutatum. — HortScience 41: 1317–1321, 2006.Google Scholar
  10. Dal Cin, V., Barbaro, E., Danesin, M., Murayama, H., Velasco, R., Ramina, A.: Fruitlet abscission: a cDNA-AFLP approach to study genes differentially expressed during shedding of immature fruits reveals the involvement of a putative auxin hydrogen symporter in apple (Malus domestica L. Borkh). — Gene 442: 26–36, 2009b.CrossRefGoogle Scholar
  11. Dal Cin, V., Danesin, M., Boschetti, A., Dorigoni, A., Ramina, A.: Ethylene biosynthesis and perception in apple fruitlet abscission (Malus domestica L.Borck). — J. exp. Bot. 56: 2995–3005, 2005.PubMedCrossRefGoogle Scholar
  12. Dal Cin, V., Galla, G., Boschetti, A., Dorigoni, A., Velasco, R.: Ethylene involvement in auxin transport during apple fruitlet abscission (Malus domestica L. Borkh). — In: Ramina, A., Chang, C., Giovannoni, J., Klee, H., Perata, P., Woltering, E. (ed.): Advances in Plant Ethylene Research. Pp. 89–93. Springer, Dordrecht 2007.CrossRefGoogle Scholar
  13. Dal Cin, V., Velasco, R., Ramina, A.: Dominance induction of fruitlet shedding in Malus × domestica (L. Borkh): molecular changes associated with polar auxin transport. — BMC Plant Biol. 9: 139–152, 2009a.CrossRefGoogle Scholar
  14. Else, M.A., Stankiewicz-Davies, A.P., Crisp, C.M., Atkinson, C.J.: The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention. — J. exp. Bot. 55: 2099–2190, 2004.PubMedCrossRefGoogle Scholar
  15. Fernandez, O., Bethencourt, L., Quero, A., Sangwan, R.S., Clement, C.: Trehalose and plant stress responses: friend or foe? — Trends Plant Sci. 15: 409–417, 2010.PubMedCrossRefGoogle Scholar
  16. Gil-Amado, J.A., Gomez-Jimenez, M.C.: Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission. — Planta 235: 1221–1237, 2012.PubMedCrossRefGoogle Scholar
  17. Gómez-Cadenas, A., Mehouachi, J., Tadeo, F.R., Primo-Millo, E., Talon, M.: Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. — Planta 210: 636–643, 2000.PubMedCrossRefGoogle Scholar
  18. Gomez-Jimenez, M.C., Paredes, M.A., Gallardo, M., Sanchez-Calle, I.M.: Mature fruit abscission is associated with upregulation of polyamine metabolism in the olive AZ. — J. Plant Physiol. 167: 1432–1441, 2010.PubMedCrossRefGoogle Scholar
  19. Hanson, J., Smeekens, S.: Sugar perception and signaling — an update. — Curr. Opin. Plant Biol. 12: 562–567, 2009.PubMedCrossRefGoogle Scholar
  20. Hartmond, U., Yuan, R.C., Burns, J.K., Grant, A., Kender, W.: Citrus fruit abscission induced by methyl-jasmonate. — J. amer. Soc. hort. Sci. 125: 547–552, 2000.Google Scholar
  21. Hilt, C., Bessis, R.: Abscission of grapevine fruitlets in relation to ethylene biosynthesis. — Vitis 42: 1–3, 2003.Google Scholar
  22. Iglesias, D.J., Tadeo, F.R., Primo-Millo, E., Talon, M.: Fruit set dependence on carbohydrate availability in citrus trees. — Tree Physiol. 23: 199–204, 2003.PubMedCrossRefGoogle Scholar
  23. Iglesias, D.J., Tadeo, F.R., Primo-Millo, E., Talon, M.: Carbohydrate and ethylene levels related to fruitlet drop through AZ A in citrus. — Trees 20: 348–355, 2006.CrossRefGoogle Scholar
  24. Ish-Shalom, M., Dahan, Y., Maayan, I., Irihimovitch, V.: Cloning and molecular characterization of an ethylene receptor gene, MiERS1, expressed during mango fruitlet abscission and fruit ripening. — Plant Physiol. Biochem. 49: 931–936, 2011.PubMedCrossRefGoogle Scholar
  25. Karuppiah, K.J., Burns, J.K.: Expression of ethylene biosynthesis and signaling genes during differential abscission responses of sweet orange leaves and mature fruit. — J. amer. Soc. hort. Sci. 135: 456–464, 2010.Google Scholar
  26. Kazokas, W.C., Burns, J.K.: Cellulase activity and gene expression in citrus fruit AZs during and after ethylene treatment. — J. amer. Soc. hort. Sci. 123: 781–786, 1998.Google Scholar
  27. Kolarič, J., Pleško, M.I., Tojnko, S., Stopar, M.: Apple fruitlet ethylene evolution and MdACO1, MdACS5A, and MdACS5B expression after application of naphthaleneacetic acid, 6-benzyladenine, ethephon, or shading. — HortScience 46: 1381–1386, 2011.Google Scholar
  28. Lanahan, M.B., Yen, H.C., Giovannoni, J.J., Klee, H.J.: The Never Ripe mutation blocks ethylene perception in tomato. — Plant Cell 6: 521–530, 1994.PubMedGoogle Scholar
  29. Li, J.G., Yuan, R.G.: NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in’ Delicious’ apples. — J. Plant Growth Regul. 27: 283–295, 2008.CrossRefGoogle Scholar
  30. Li, J.G., Zhu, G., Yuan, R.G.: Profiling the expression of genes related to ethylene biosynthesis, ethylene perception, and cell wall degradation during fruit abscission and fruit ripening in apple. — J. amer. Soc. hort. Sci. 135: 391–401, 2010.Google Scholar
  31. Mahouachi, J., Gómez-Cadenas, A., Primo-Millo, E., Talon, M.: Abscisic acid and gibberellins in citrus fruits subjected to a series of different water conditions. — J. Plant Growth Regul. 24: 179–187, 2005.CrossRefGoogle Scholar
  32. Mahouachi, J., Iglesias, D.J., Agustí, M., Talon, M.: Delay of early fruitlet abscission by branch girdling in citrus coincides with previous increases in carbohydrate and gibberellin concentrations. — Plant Growth Regul. 58: 15–23, 2009.CrossRefGoogle Scholar
  33. Mao, L., Begum, D., Chuang, H.W., Budiman, M.A., Szymkowiak, E.J., Irish, E.E., Wing, R.A.: JOINTLESS is a MADS-box gene controlling tomato flower AZ development. — Nature 406: 910–913, 2000.PubMedCrossRefGoogle Scholar
  34. McCourt, P., Creelman, R.: The ABA receptors — we report you decide. — Curr. Opin. Plant Biol. 11: 474–478, 2008.PubMedCrossRefGoogle Scholar
  35. Nakano, T., Kimbara, J., Fujisawa, M., Kitagawa, M., Ihashi, N., Maeda, H., Kasumi, T., Ito, Y.: MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. — Plant Physiol. 158: 439–450, 2012.Google Scholar
  36. Ooms, J.J.J., Kloosterziel, K.M.L., Bartels, D., Koornneef, M., Kassen, C.M.: Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. — Plant Physiol. 102: 1185–1191, 1993.Google Scholar
  37. Parra-Lobato, M.C., Gomez-Jimenez, M.C.: Polyamine-induced modulation of genes involved in ethylene biosynthesis and signaling pathways and nitric oxide productionduring olive mature fruit abscission. — J. exp. Bot. 62: 4447–4465, 2011.PubMedCrossRefGoogle Scholar
  38. Peleg, Z., Blumwald, E.: Hormone balance and abiotic stress tolerance in crop plants. — Curr. Opin. Plant Biol. 14: 290–295, 2011.PubMedCrossRefGoogle Scholar
  39. Pierik, R.L.M.: Hormonal regulation of secondary abscission in pear pedicels in vitro. — Plant Physiol. 48: 5–8, 1980.CrossRefGoogle Scholar
  40. Pozo, L., Yuan, R., Kostenyyuk, I., Alferez, F., Zhong, G.Y., Burns, J.K.: Differential effects of 1-methylcyclopropene on citrus leaf and mature fruit abscission. — J. amer. Soc. hort. Sci. 129: 473–478, 2004.Google Scholar
  41. Racskó, J., Soltész, M., Szabó, Z., Nyéju, J.: Fruit drop: II. Biological background of flower and fruit drop. — Int. J. hort. Sci. 12: 103–108, 2006.Google Scholar
  42. Rasori, A., Ruperti, B., Bonghi, C., Tonutti, P., Ramina, A.: Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. — J. exp. Bot. 53: 2333–2339, 2002.PubMedGoogle Scholar
  43. Rolland, F., Baena-Gonzalez, E., Sheen, J.: Sugar sensing and signaling in plants: conserved and novel mechanisms. — Annu. Rev. Plant Biol. 57: 675–709, 2006.PubMedCrossRefGoogle Scholar
  44. Ruiz, R., García-Luis, A., Monerri, C., Guardiola, J.L.: Carbohydrate availability in relation to fruitlet abscission in citrus. — Ann. Bot. 87: 805–812, 2001.CrossRefGoogle Scholar
  45. Sexton, R., Roberts, J.: Cell biology of abscission. — Annu. Rev. Plant Physiol. 33: 133–162, 1982.CrossRefGoogle Scholar
  46. Schumacher, K., Schmitt, T., Rossberg, M., Schmitz, G., Theres, K.: The lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. — Proc. nat. Acad. Sci. USA 96: 290–295, 1999.PubMedCrossRefGoogle Scholar
  47. Smith, E., Whiting, M.: Effect of ethephon on sweet cherry pedicel-fruit retention force and quality is cultivar dependent. — Plant Growth Regul. 60: 213–223, 2010.CrossRefGoogle Scholar
  48. Sun, L.X., Bukovac, M.J., Forsline, P.L., Nocker, S.V.: Natural variation in fruit abscission-related traits in apple (Malus). — Euphytica 165: 55–67, 2009.CrossRefGoogle Scholar
  49. Taesakul, P., Pradisthakarn, N., Chantaksinopas, S., Siriphanich, J.: Longkong fruit abscission and its control. — Postharvest Biol. Technol. 64: 91–93, 1012.CrossRefGoogle Scholar
  50. Taylor, J.E., Whitelaw, C.A.: Signals in abscission. — New Phytol. 151: 323–339, 2001.CrossRefGoogle Scholar
  51. Vandenbussche, F., Straeten, V.D.: One for all and all for: cross-talk of multiple signals controlling the plant phenotype. — J. Plant Growth Regul. 26: 178–187, 2007.CrossRefGoogle Scholar
  52. Wang, X.M.: Lipid signaling. — Curr. Opin. Plant Biol. 7: 392–336, 2004.CrossRefGoogle Scholar
  53. Whitelaw, C.A., Lyssenko, N.N., Chen, L., Zhou, D., Mattoo, A.K., Tucker, M.L.: Delayed abscission and shorter internodes correlated with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato. — Plant Physiol. 128: 978–987, 2002.PubMedCrossRefGoogle Scholar
  54. Wiersma, P.A., Zhang, H., Lu, C., Quail, A., Toivonen, P.M.A.: Survey of the expression of genes for ethylene synthesis and perception during maturation and ripening of ‘sunrise’ and ‘Golden Delicious’ apple fruit. — Postharvest Biol. Technol. 44: 204–211, 2007.CrossRefGoogle Scholar
  55. Wu, X.M., Yu, W.Y., Han, L.B., Li, C.L., Wang, H.Y., Zhong, N.Q., Yao, Y., Xia, G.X.: The tobacco BLADE-ONPETIOLE2 gene mediates differentiation of the corolla abscission zone by controlling longitudinal cell expansion. — Plant Physiol. 159: 835–850, 2012.PubMedCrossRefGoogle Scholar
  56. Wu, Z.C., Burns, J.K.: Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in ‘Valencia’ orange during abscission. — J. exp. Bot. 54: 1183–1191, 2003.PubMedCrossRefGoogle Scholar
  57. Wu, Z.C., Burns, J.K.: A β-galactosidase gene is expressed during mature fruit abscission of ‘Valencia’ orange (Citrus sinensis). — J. exp. Bot. 55: 1483–1490, 2004.PubMedCrossRefGoogle Scholar
  58. Yuan, R.C., Kender, W.J., Burns, J.K.: Young fruit and auxin transport inhibitors affect the response mature ‘Valencia’ oranges to abscission materials via changing endogenous plant hormones. — J. amer. Soc. hort. Sci. 128: 302–308, 2003.Google Scholar
  59. Yuan, R.G., Li, J.G.: Effect of sprayable 1-MCP, AVG, and NAA on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of ‘Delicious’ apple. — Hort Science 43: 1454–1460, 2008.Google Scholar
  60. Zhou, C.J., Lakso, A.N., Robinson, T.L., Gan, S.S.: Isolation and characterization of genes associated with shade-induced apple abscission. — Mol. Genet. Genomics 280: 83–92, 2008.PubMedCrossRefGoogle Scholar
  61. Zhu, H., Beers, E.P., Yuan, R.C.: Aminoethoxyvinylglycine inhibits fruit abscission induced by naphthaleneacetic acid and associated relationships with expression of genes for ethylene biosynthesis, perception, and cell wall degradation in ‘Delicious’ apple. — J. amer. Soc. hort. Sci. 133: 727–734, 2008.Google Scholar
  62. Zhu, H., Yuan, R.G.: Effects of 1-methylcyclopropene and naphthaleneacetic acid on fruit set and expression of genes related to ethylene biosynthesis and perception and cell wall degradation in apple. — J. amer. Soc. hort. Sci. 135: 402–409, 2010.Google Scholar
  63. Zhu, H., Dardick, C.D., Beers, E.P., Callanhan, A.M., Xia, R., Yuan, R.C.: Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. — BMC Plant Biol. 11:138–157, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. J. Xie
    • 1
  • L. Deng
    • 1
  • L. Jing
    • 3
  • S. L. He
    • 1
  • Y. T. Ma
    • 4
  • S. L. Yi
    • 1
  • Y. Q. Zheng
    • 1
  • L. Zheng
    • 2
  1. 1.Citrus Research InstituteSouthwest UniversityChongqingP.R. China
  2. 2.College of Life Science and TechnologyChongqing University of Arts and SciencesChongqingP.R. China
  3. 3.College of Horticulture and Landscape ArchitectureSouthwest UniversityChongqingP.R.China
  4. 4.Department of HorticultureZhejiang UniversityHangzhouP.R.China

Personalised recommendations