Biologia Plantarum

, Volume 57, Issue 2, pp 325–331 | Cite as

Metabolism and aluminum accumulation in Plantago almogravensis and P. algarbiensis in response to low pH and aluminum stress

  • N. Martins
  • S. Gonçalves
  • A. Romano
Original Papers


We investigated the impact of low pH and aluminum on the metabolism and capacity for Al accumulation in shoots of the plantain species Plantago algarbiensis and P. almogravensis. We found that increasing the concentration of Al in the medium increased accumulation of it in the shoots of both plants (although more in P. almogravensis than in P. algarbiensis). The presence of Al in the medium induced proline and saccharide synthesis in P. almogravensis without affecting lipid peroxidation, but increased proline synthesis and lipid peroxidation in P. algarbiensis without affecting the saccharide content. Lipid peroxidation in P. algarbiensis was also enhanced at pH 4.0. The activity of antioxidant enzymes was increased as a response to low pH and Al in both species. Our data indicate that both species can accumulate high levels of Al but they have different sensitivities to low pH and/or the presence of Al in the growth medium.

Additional key words

antioxidant enzymes lipid peroxidation proline saccharides tolerance 



ascorbate peroxidase




dry mass


fresh mass


guaiacol peroxidase




Murashige and Skoog medium


nitroblue tetrazolium


superoxide dismutase


thiobarbituric acid


trichloroacetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi, H.E.: Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 273–286. Verlag Chemie, Weinhern 1983.Google Scholar
  2. Andersson, M.E., Brunet, J.: Sensitivity to H and Al ions limiting growth and distribution of the woodland grass Bromus benekennii. — Plant Soil 153: 243–254, 1993.CrossRefGoogle Scholar
  3. Baker, A.J.M., Brooks, R.R.: Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry. — Biorecovery 1: 81–126, 1989.Google Scholar
  4. Barnabas, B., Kovacs, G., Hegedus, A., Erdei, S., Horvath, G.: Regeneration of doubled haploid plants from in vitro selected microspores to improve aluminium tolerance in wheat. — J. Plant Physiol. 156: 217–222, 2000.CrossRefGoogle Scholar
  5. Basu, U., Basu, A., Taylor, G.J.: Differential exudation of polypeptides by roots of aluminum-resistant and aluminumsensitive cultivars of Triticum aestivum L. in response to aluminum stress. — Plant Physiol. 106: 151–158, 1994.PubMedGoogle Scholar
  6. Beauchamp, C.O., Fridovich, I.: Superoxide dismutase: improved assays and assays applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.PubMedCrossRefGoogle Scholar
  7. Bradford, M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  8. Branquinho, C., Serrano, H.C., Pinto, M.J., Martins-Loução, M.A.: Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. — Environ. Pollut. 146: 437–443, 2007.PubMedCrossRefGoogle Scholar
  9. Buurman, P., Jongmans, A.G.: Podzolization — an additional paradigm. — Edafologia 9: 107–114, 2002.Google Scholar
  10. Delhaize, E., Ryan, P.R.: Aluminum toxicity and tolerance in plants. — Plant Physiol. 107: 315–321, 1995.PubMedGoogle Scholar
  11. Egley, G.H., Paul, R.N., Vaughn, K.C., Duke, S.O.: Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. — Planta 157: 224–232, 1983.CrossRefGoogle Scholar
  12. Ezaki, B., Nagao, E., Yamamoto, Y., Nakashima, S., Enomoto, T.: Wild plants, Andropogon virginidus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminium, heavy metals and oxidative stresses. — Plant Cell Rep. 27: 951–961, 2008.PubMedCrossRefGoogle Scholar
  13. Foy, C.D.: Physiological effects of hydrogen, aluminium, nad manganese toxicities in acid soil. — In: Adams, F. (ed.): Soil Acidity and Liming. 2nd Ed. Pp. 57–97. ASA, CSSA nad SSSA, Madison 1984.Google Scholar
  14. Giannakoula, A., Moustakas, M., Syros, T., Yupsanis, T.: Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. — Environ. exp. Bot. 67: 487–494, 2010.CrossRefGoogle Scholar
  15. Gonçalves, S., Martins, N., Romano, A.: Micropropagation nad conservation of endangered species Plantago algarbiensis and P. almogravensis. — Biol. Plant. 53: 774–778, 2009.CrossRefGoogle Scholar
  16. Hodges, D.M., Delong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. — Planta 207: 604–611, 1999.CrossRefGoogle Scholar
  17. Kerven, G.L., Edwards, D.G., Asher, C.J., Hallman, P.S., Kokot, S.: Aluminum determination in soil solution. II. Short-term colorimetric procedures for the measurement of inorganic monomeric aluminum in the presence of organic acid ligands. — Aust. J. Soil Res. 27: 91–102, 1989.CrossRefGoogle Scholar
  18. Khan, A.A., McNeilly, T., Collins, C.: Accumulation of amino acids, proline, and carbohydrates in response to aluminum and manganese stress in maize. — J. Plant Nutr. 23: 1303–1314, 2000.CrossRefGoogle Scholar
  19. Kinraide, T.B.: Aluminum enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations. — Physiol. Plant. 88: 619–625, 1993.CrossRefGoogle Scholar
  20. Kochian, L.V., Hoekenga, O.A., Pineros, M.A.: How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorus efficiency. — Annu. Rev. Plant Biol. 55: 459–493, 2004.PubMedCrossRefGoogle Scholar
  21. Liu, P., Xu, G.D., Jiang, X.M., Ying, X.F.: The effect of aluminum on germination of soybean seed. — Seed 1: 30–32, 2003.Google Scholar
  22. Liu, Q., Yang, J.L., He, Y.Y., Zheng, S.J.: Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale. — Biol. Plant. 52: 87–92, 2008.CrossRefGoogle Scholar
  23. Magné, C., Larher, F.: High sugar content of extracts interferes with colorimetric determination of aminoacid and free proline. — Anal. Biochem. 200: 115–118, 1992.PubMedCrossRefGoogle Scholar
  24. Martins, N., Gonçalves, S., Palma, T., Romano, A.: the influence of low pH on in vitro growth and biochemical parameters of Plantago almogravensis and P. algarbiensis. — Plant Cell Tissue Organ Cult. 107: 113–121, 2011.CrossRefGoogle Scholar
  25. Mittova, V., Guy, M., Tal, M., Volokita, M.: Salinity upregulates the antioxidative system in root mitochondria nad peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. — J. exp. Bot. 55: 1105–1113, 2004.PubMedCrossRefGoogle Scholar
  26. Murashige, T., Shoog, F.: A revised medium for rapid growth and bio-assays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  27. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  28. Olivares, E., Peña, E., Marcan, E., Mostacero, J., Aguiar, G., Benítez, M., Rengifo, E.: Aluminum accumulation and its relationship with mineral plant nutrients in 12 pteridophytes from Venezuela. — Environ. exp. Bot. 65: 132–141, 2009.CrossRefGoogle Scholar
  29. Shamsi, I.H., Wei, K., Zhang, G.P., Jilani, G.H., Hassan, M.J.: Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. — Biol. Plant. — 52: 165–169, 2008.CrossRefGoogle Scholar
  30. Smirnoff, N.: Plant resistance to environmental stress. — Curr. Opin. Biotechnol. 9: 214–219, 1998.PubMedCrossRefGoogle Scholar
  31. Tabaldi, L.A., Cargnelutti, D., Castro, G.Y., Gonçalves, J.F., Rauber, R., Bisognin, D.A., Schetinger, M.R.C., Nicoloso, F.T.: Effect of aluminum on the in vitro activity of acid phosphatases of four potato clones grown in three growth systems. — Biol. Plant. 55: 178–182, 2011.CrossRefGoogle Scholar
  32. Troll, W., Lindsley, J.: A photometric method for the determination of proline. — J. biol. Chem. 215: 655–660, 1955.PubMedGoogle Scholar
  33. Von Uexküll, H.R., Mutert, E.: Global extent, development nad economic impact of acid soils. — Plant Soil 171: 1–15, 1995.CrossRefGoogle Scholar
  34. Wen, X.-P., Ban, Y., Inoue, H., Matsuda, N., Moriguchi, T.: Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. — Environ. exp. Bot. 66: 471–478, 2009.CrossRefGoogle Scholar
  35. Xu, M., You, J., Hou, N., Zhang, H., Chen, G., Yang, Z.: Mitochondrial enzymes and citrate transporter contribute to the aluminium-induced citrate secretion from soybean (Glycine max) root. — Funct. Plant Biol. 37: 478, 2010.CrossRefGoogle Scholar
  36. Xu, F.J., Li, G., Jin, C.W., Liu, W.J., Zhang, S.S., Zhang, Y.S., Lin, X.Y.: Aluminum-induced changes in reactive oxygen species accumulation, lipid peroxidation and antioxidant capacity in wheat root tips. — Biol. Plant. 56: 89–96, 2012.CrossRefGoogle Scholar
  37. Yadav, S.K., Mohanpuria, P.: Responses of Camellia sinensis cultivars to Cu and Al stress. — Biol. Plant. 53: 737–740, 2009.CrossRefGoogle Scholar
  38. Yemm, E.W., Willis, A.J.: The estimation of carbohydrates in plant extracts by anthrone. — Biochem. J. 57: 508–514, 1954.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB), Faculty of Sciences and TechnologyUniversity of AlgarveFaroPortugal

Personalised recommendations